首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Polypyrrole nanoparticles (PPy NPs) exhibit strong absorption in the near infrared (NIR) region. With an excellent photothermal efficiency of ~45% at 808 nm, sub-100 nm PPy NPs are demonstrated to be a promising photothermal agent for in vivo cancer therapy using NIR irradiation.  相似文献   

2.
PCA (2,2,5,5-tetramethylpiperidine-1-oxyl-3-carboxylic acid) is a relatively stable free radical which has been shown to be useful as a contrast agent for nuclear magnetic resonance imaging and as an imaging/spectroscopy agent for EPR. In an effort to determine the role of the liver and kidney in the pharmacokinetics of PCA, using low frequency in vivo EPR spectroscopy, we followed the clearance of PCA after intravenous injection in mice: under normal conditions, with a restricted blood supply to the kidneys, after exposure to an acute hepatotoxin CCl4, and after exposure to lipopolysaccharide (endotoxin). The observed pharmacokinetics fit a two-component model. The fast component was dramatically affected when the renal vessels were restricted, while CCl4 and endotoxin had a smaller but significant effect. The half times of the slow components were not significantly different (p>0.05) in the groups treated by renal blood flow occlusion, CCl4, or LPS, compared with the control group. In conclusion, we find that the pharmacokinetics of PCA need to be completely described in term of a two component model: the fast component of the decay is mainly due to the elimination by the kidneys and also is affected by the time for the initial distribution; the slow component is related to the bioreduction of the nitroxide. In addition to the liver other tissues can also effectively metabolize PCA. The effect of oxygen on the rate of metabolism is modest at most.  相似文献   

3.
INVESTIGATION OF DAMAGE TO FOREST BY EPR SPECTROSCOPY in vivo   总被引:1,自引:0,他引:1  
Spruce needles collected from several trees of the Black Forest were investigaled by EPR spectroscopy. These needles show in the g = 2.00 region a signal IIS(Tyr D +) and a light-induced signal I(P700+) and a Mn2+ hyperfine structure which superimposes the other absorptions. Difference spectra, light minus dark, partly eliminate the manganese hyperfine structure, and P700+ can be observed. By comparison of these EPR signals with those of spinach chloroplast or thylakoid membranes described in the literature, significant deviations were observed, whereas several trees grown in the vicinity of Tubingen exhibit the well known D+ and P700+ EPR spectra. After treatment of branches of these 'normal' trees with herbicides like Amitrol and Roundup or chemicals like toluene or trichlormethane the EPR signals obtained are comparable with those observed with needles of the Black Forest.  相似文献   

4.
Artificial enzyme cascade systems with confinement effect are highly important in synthetic biology and biomedicine.Herein,a framework nucleic acid-based confined enzyme cascade(FNA-CEC)for synergistic cancer therapy in vivo was developed.The FNA-CEC consisted of glucose oxidase and horseradish peroxidase precisely assembled on an addressable DNA tetrahedron scaffold within few nanometers.Glucose oxidase(GOx)can trigger efficient glucose depletion for tumor starvation therapy,and increase the local concentration of H2O2 in situ for enhanced downstream horseradish peroxidase(HRP)-activated prodrug therapy.Due to the spatial-confinement on DNA tetrahedron scaffold,the efficiency of intermediate metabolites transportation between the enzyme cascades was improved.Moreover,FNA-CEC was applied for efficient synergistic cancer therapy in vitro and in vivo.As a simple and efficient approach,the FNA-CEC is expected to expand the toolbox of technologies in synthetic biology and biomedicine.  相似文献   

5.
6.
We have investigated tumor immunological effects of photodynamic therapy (PDT) of liver metastases. Livers of Wag/Rij rats were inoculated with three tumors of a syngeneic rat colon carcinoma cell line, CC531. One tumor in each rat was illuminated, with or without previous administration of the photosensitizer metatetrahydroxyphenylchlorin (mTHPC). PDT was effective in causing necrosis of tumors, but it did not affect the growth rate of nearby, nonilluminated tumors in the liver. Immunological staining of tumors showed natural killer (NK) cells to be significantly lower in PDT-treated tumors than in control tumors (P < 0.05). T cells in PDT-treated tumors and in their margins were lower than in tumors that received only sensitizer or only illumination (P = 0.015) at day 2 after treatment but reappeared at the tumor margins from day 7 after treatment. For macrophages, a similar pattern was found. NK cells, T cells or macrophages in nonilluminated tumors in mTHPC-treated rats did not increase significantly when compared with tumors in rats without mTHPC treatment. These findings indicated that no antitumor effect of a systemic immune response was present, as measured by the effect of PDT on growth of distant tumors and the number of T lymphocytes, NK cells and macrophages in these tumors.  相似文献   

7.
A highly efficient drug vector for photodynamic therapy (PDT) drug delivery was developed by synthesizing PEGylated gold nanoparticle conjugates, which act as a water-soluble and biocompatible "cage" that allows delivery of a hydrophobic drug to its site of PDT action. The dynamics of drug release in vitro in a two-phase solution system and in vivo in cancer-bearing mice indicates that the process of drug delivery is highly efficient, and passive targeting prefers the tumor site. With the Au NP-Pc 4 conjugates, the drug delivery time required for PDT has been greatly reduced to less than 2 h, compared to 2 days for the free drug.  相似文献   

8.
This paper describes the rationale for carrying out EPR studies in human subjects in the clinical setting and the potential approaches and specific steps needed to make such studies feasible and useful. The suggested operational approach is to have the initial applications occur in as clinically useful and simple a manner as possible, with the expectation that once the technique is introduced and accepted in the clinical setting, that more complex and/or more technically difficult applications will be able to be developed. The initial approach should be based on EPR spectroscopy at 1.2 GHz focusing on clinical applications for which in vivo EPR provides a clearly useful approach to important clinical problems for which currently there is no good alternative approach, that can be carried out by measurements within 10 mm of the surface. The suggested initial clinical applications are: guiding tumor therapy for tumors and vascular disease by direct measurements of tissue pO2, characterizing and monitoring implanted drug delivery systems, and monitoring critical care.  相似文献   

9.
10.
A very simple ring resonator for in vivo L-band EPR spectroscopy was built and characterised. It employs a special capacitive coupling that allows measurents to be made on large biological samples which are not possible with other resonators. In spite of its intrinsic low Q it has a sensitivity almost equivalent to that obtained from high Q resonators. These features were tested down to a nitroxide concentration of 10 μM in high conductivity phantoms.  相似文献   

11.
Application of the spin trapping technique in intact animals requires an understanding of the stability and distribution of the spin traps and their spin adducts in vivo. We studied the stability of DMPO in vivo in mice using HPLC and the stability of spin adducts of DMPO by EPR in plasma, whole blood, peritoneal fluid, and homogenized heart tissue of the rat. At 15 minutes after intraperitoneal injection DMPO had similar concentrations in the liver, heart, and blood of the mice and 40% remained in the organs 2 hours after the injection. In contrast, the spin adduct DMPO-OH was short lived, with a half-life of 3.0 minutes in plasma, and was not detectable 1 minute after formation in whole blood and homogenized heart tissue. The carbon centered spin adduct DMPO-CH(OH)CH3 was more stable, having half-lives of 16, 11, 3.6, and 0.79 minutes in plasma, peritoneal fluid, whole blood, and homogenized heart tissue, respectively. The spin adduct DMPO-SO3 was sufficiently stable for the adduct to be observed directly from living mice.  相似文献   

12.
We describe a novel strategy for the fabrication of plasmonic nanopowders (dried gold nanoparticles) by using wet chemical nanoparticle synthesis, PEG-SH functionalization, and a standard freeze-drying technique. Our strategy is illustrated by successful fabrication of different plasmonic nanopowders, including gold nanorods, gold-silver nanocages, and gold nanospheres. Importantly, the dried nanoparticles can be stored for a long time under usual conditions and then can easily be dissolved in water at a desired concentration without such hard manipulations as sonication or heating. Redispersed samples maintain the plasmonic properties of parent colloids and do not form aggregates. These properties make pegylated freeze-dried gold nanoparticles attractive candidates for plasmonic photothermal therapy in clinical settings. In this work, redispersed gold nanorods were intravenously administered to mice bearing Ehrlich carcinoma tumors at doses of 2 and 8 mg (Au)/kg (animal). Particle biodistribution was measured by atomic absorption spectroscopy, and tumor hyperthermia effects were studied under laser NIR irradiation. Significant tumor damage was observed only at the higher dose of the nanorods.  相似文献   

13.
Singlet oxygen(1O2) is a strong oxidant which plays important roles in photodynamic therapy(PDT). The exploitation of photosensitizers with high 1O2 production is crucial to improve PDT efficiency. In this study, a radical labeled quartet photosensitizer Cy-DENT is reported with high singlet oxygen quantum yield(ΦΔ=32.3%) due to a radical enhanced inter-system crossing(ISC) process. After the introduction of 2,2,6,6-tetramethylpiperidinyloxy(TEMPO) radical, quartet state 4[R,T] of CyDENT could be formed to give an over 20-fold enhancement of singlet oxygen quantum yield compared to Cy-DEN(without TEMPO radical) under irradiation of near infrared(NIR) light. In addition, the 1O_(2 )production is well controlled by varying the electron-donating ability of the terminal substituent group. Cy-DENT possesses good cell permeability and is localized in mitochondria. Under the irradiation of 700 nm light, Cy-DENT can produce high levels of ROS to destroy the mitochondria membrane potential and induce cell apoptosis. Through the encapsulation of PEG-SS-PCL micelle, Cy-DENT can be effectively delivered to tumors and suppresses the tumor growth after PDT treatment.  相似文献   

14.
A new type of drug delivery system (DDS) involved chitosan (CHI) modified single walled carbon nanotubes (SWNTs) for controllable loading/release of anti-cancer doxorubicin (DOX) was constructed. CHI was non-covalently wrapped around SWNTs, imparting water-solubility and biocompatibility to the nanotubes. Folic acid (FA) was also bounded to the outer CHI layer to realize selective killing of tumor cells. The targeting DDS could effectively kill the HCC SMMC-7721 cell lines and depress the growth of liver cancer in nude mice, showing superior pharmaceutical efficiency to free DOX. The results of the blood routine and serum biochemical parameters, combined with the histological examinations of vital organs, demonstrating that the targeting DDS had negligible in vivo toxicity. Thus, this DDS is promising for high treatment efficacy and low side effects for future cancer therapy.  相似文献   

15.
The fluorescence-labeled closo-dodecaborane lipid (FL-SBL) was synthesized from (S)-(+)-1,2-isopropylideneglycerol as a chiral starting material. FL-SBL was readily accumulated into the PEGylated DSPC liposomes prepared from DSPC, CH, and DSPE-PEG-OMe by the post insertion protocol. The boron concentrations and the fluorescent intensities of the FL-SBL-labeled DSPC liposomes increased with the increase of the additive FL-SBL, and the maximum emission wavelength of the liposomes appeared at 531 nm. A preliminary in vivo imaging study of tumor-bearing mice revealed that the FL-SBL-labeled DSPC liposomes were delivered to the tumor tissue but not distributed to hypoxic regions.  相似文献   

16.
The identification of normal and cancer breast tissue of rats was investigated using high-frequency (HF) FT-Raman spectroscopy with a near-infrared excitation source on in vivo and ex vivo measurements. Significant differences in the Raman intensities of prominent Raman bands of lipids and proteins structures (2,800?C3,100?cm?1) as well as in the broad band of water (3,100?C3,550?cm?1) were observed in mean normal and cancer tissue spectra. The multivariate statistical analysis methods of principal components analysis (PCA) and linear discriminant analysis (LDA) were performed on all high-frequency Raman spectra of normal and cancer tissues. LDA results with the leave-one-out cross-validation option yielded a discrimination accuracy of 77.2, 83.3, and 100% for in vivo transcutaneous, in vivo skin-removed, and ex vivo biopsy HF Raman spectra. Despite the lower discrimination value for the in vivo transcutaneous measurements, which could be explained by the breathing movement and skin influences, our results showed good accuracy in discriminating between normal and cancer breast tissue samples. To support this, the calculated integration areas from the receiver-operating characteristic (ROC) curve yielded 0.86, 0.94, and 1.0 for in vivo transcutaneous, in vivo skin-removed, and ex vivo biopsy measurements, respectively. The feasibility of using HF Raman spectroscopy as a clinical diagnostic tool for breast cancer detection and monitoring is due to no interfering contribution from the optical fiber in the HF Raman region, the shorter acquisition time due to a more intense signal in the HF Raman region, and the ability to distinguish between normal and cancerous tissues.  相似文献   

17.
The latest progress of using carbon nanotubes (CNTs) for in vivo cancer nanotechnology is reviewed. CNTs can be functionalized by either covalent or non-covalent chemistry to produce functional bioconjugates for many in vivo applications. In vivo behaviors and toxicology studies of CNTs are summarized, suggesting no significant toxicity of well functionalized CNTs to the treated mice. Owing to their unique chemical and physical properties, CNTs, especially single-walled carbon nanotubes (SWNTs), have been widely used for various modalities of in vivo cancer treatment and imaging. Future development of CNT-based nanomedicine may bring novel opportunities to cancer diagnosis and therapy.  相似文献   

18.
The application of recombinant immunotoxin and radioimmunoconjugate in Cancer therapy has revived the "magic bullet" concept predicted a century ago. Many of the recombinant antibodies have received FDA approval for various indication of cancer in recent years and numerous others are in clinical trials.  相似文献   

19.
Photosensitizers: therapy and detection of malignant tumors   总被引:21,自引:0,他引:21  
  相似文献   

20.
Simulation of magnetic resonance spectra of probes in partially ordered glasses requires in principle a numerical integration on the full set of three Euler angles omega=(alpha beta gamma) from a laboratory fixed to a molecule fixed reference frame. It is shown that it is possible to manage efficiently this problem by using the algebraic properties of the Wigner matrix elements. This analysis is applied to time resolved EPR (TREPR) spectra of a series of bis-adducts of C60 in the ordered glass of a nematic liquid crystal solvent. A paramagnetic triplet state is created by light excitation and TREPR spectra are obtained with the external magnetic field set parallel or perpendicular to the director n of the mesophase. The preferred orientation in the mesophase of the triplet state zero field tensor is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号