The researches pursued by us made it possible to find two populations of fossil tracks in stanfieldite grains. The tracks of these populations strongly differed both in size, shape and character of distribution. The first population, consisting of short (L2–6 μm instead of L8–12 μm for induced fission tracks), round-shaped tracks irregularly distributed, as we suppose, suffered an intense heating process, which caused a significant amount of partial annealing. The second population, consisting of longer (L8–12 μm), rhombic-shaped tracks homogeneously distributed, occurred after this thermal event. Only the second population track density was used for the fission-track age calculation.
After correction of the fossil track density, consisting of the second population tracks, for other possible track sources, the revealed tracks were unequivocally identified as those due to the spontaneous fission of 244Pu and 238U. The largest part of them was attributed to the spontaneous fission of 244Pu; ρPu/ρU≈3. The model fission-track age of the studied pallasite turned out to be 4.20 Gyr. This value fix the time of the last shock/thermal event in the cosmic history of the Bragin pallasite, which had caused the partial annealing of tracks presented to that time and “fission-track clock” reset. 相似文献