首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel electron‐deficient heteroacene 15H‐pyrazino[2″,3″:3′,4′]pyrrolo[1′,2′:1,2]imidazo[4,5‐b]phenazin‐15‐one ( 1 ) has been successfully synthesized and characterized. Compound 1 can selectively recognize CN? and F? over other 10 anions including BF4?, PF6?, Cl?, SO42?, NO3?, I?, H2PO4?, ClO4?, Ac?, and Br? in CHCl3/DMF mixed solvents with dual responses, including absorption signals and fluorescent “turn‐off” effects. CN? and F? can be distinguished by the completely quenched fluorescence (for CN?) and partially reduced fluorescence (for F?). Especially, compound 1 exhibits higher sensitivity to CN? than F? with the response concentration as low as 5.0 × 10?6 mol/L. Moreover, compound 1 shows very interesting solvatochromism effect, and the CHCl3 solution of compound 1 is sensitive to triethylamine, and its emission could change from green to red upon the addition of triethylamine, which is attributed to the n–π intermolecular charge‐transfer interaction.  相似文献   

2.
A long wavelength emission fluorescent (612 nm) chemosensor with high selectivity for H2PO4? ions was designed and synthesized according to the excited state intramolecular proton transfer (ESIPT). The sensor can exist in two tautomeric forms ('keto' and 'enol') in the presence of Fe3+ ion, Fe3+ may bind with the 'keto' form of the sensor. Furthermore, the in situ generated GY‐Fe3+ ensemble could recover the quenched fluorescence upon the addition of H2PO4? anion resulting in an off‐on‐type sensing with a detection limit of micromolar range in the same medium, and other anions, including F?, Cl?, Br?, I?, AcO?, HSO4?, ClO4? and CN? had nearly no influence on the probing behavior. The test strips based on 2‐[2‐hydroxy‐4‐(diethylamino) phenyl]‐1H‐imidazo[4,5‐b]phenazine and Fe3+ metal complex ( GY‐Fe3+ ) were fabricated, which could act as convenient and efficient H2PO4? test kits.  相似文献   

3.
An efficient fluorescence probe, 4‐methyl‐2,6‐bis((thiophen‐2‐ylmethylimino)methyl)phenol (DFPTMA) and its SCN? adduct has been synthesized and characterized by different spectroscopic techniques like 1H NMR,13C NMR, QTOF‐MS ES+, UV‐Vis and FTIR spectroscopy. Single crystal X‐ray structure of DFPTMA is reported. In presence of SCN?, DFPTMA exhibits significant fluorescence enhancement (λEx, 455 nm, λEm, 504 nm) in aqueous methanol (water‐methanol, 1:4, V/V, 0.1 mol/L HEPES buffer, pH 7.4). Common bio‐relevant anions viz. CH3COO?, NO2?, NO3?, Cl?, Br?, I?, SO42?, HSO4?, N3?, HAsO42?, Cr2O72?, H2PO4?, ClO4?, NCO?, CN?, CO32?, F?, PO43?, S2?, HS? do not interfere in the recognition of SCN?. Lowest detection limit for SCN? is 0.88 µmol/L with response time <5 min. The SCN? assisted enhancement in emission intensity may be attributed to the formation of H‐bond which enhances the rigidity of the molecular assembly.  相似文献   

4.
A new azoimine receptor, R1, was synthesized by Schiff base condensation of 4-(4-butylphenyl) azophenol and 2,6-diaminopyridine and acts as a colorimetric and fluorometric chemosensor for F? and also toward Cu2+ ions in aqueous environment. UV–Vis absorption and fluorescent emission spectra were employed to study the sensing process. Emission study was performed to examine the dual sensing ability of the obtained probe with sequential addition of F? followed by Cu2+ and vice versa. The receptor is an efficient “ON–OFF” fluorescent probe for the fluoride ion. Also, R1 + F? operated as an “OFF–ON” fluorescent sensor for Cu2+ ions. Considering emission intensity and absorption wavelength for F? and Cu2+ ions, a molecular system was developed with the ability to mimic the functions of XNOR logic gating on the molecular level. In addition, R1 behaved as a molecular security keypad lock with F? and Cu2+ inputs. The keypad lock operation is particularly important, as the output of the system depends not only on the proper combination but also on the order of input signals, creating the correct password that can be used to “open” this molecular keypad lock through strong fluorescence emission at 460?nm.  相似文献   

5.
A dinitrophenyl hydrazone colorimetric anion sensor (receptor 1 ) was synthesized and its recognition properties towards various anions were investigated by naked eye observation and spectroscopic methods, namely UV‐vis and 1H NMR titrations in DMSO. The addition of AcO?, F? and H2PO4? to receptor 1 resulted in marked red shift of the charge‐transfer absorbance band (Δλ=91 nm, 407 nm to 498 nm) concomitant with a 'naked‐eye' detectable colour change from yellow to pink. However, both the colour and spectral changes were reversible by the addition of cations (MII) of 3d5‐10 as well as CdII, HgII, MgII and CaII. Subsequently, complementary IMP/INH logic functions based on colour and spectral switching (ON/OFF) were affirmed. The sensor can, thus be utilized as a colorimetric molecular switch modulated by F?/MII.  相似文献   

6.
A simple epoxy-based oligomer 1 bearing naphthalene unit at the chain-ends is reported to be highly selective ON–OFF type fluorescent probe for fluoride anion. The titled oligomer displayed fluorescence quenching upon addition of F?, resulting in selective detection of fluoride anion over other anions, such as AcO?, Cl?, Br?, I?, HSO4?, NO3? and H2PO4? in CH3CN. Fluorescence experiments suggest the significant influence of the oligomer chain on the sensitivity and selectivity of 1 towards fluoride anion.  相似文献   

7.
8.
A novel coumarin-based compound 1 featuring thiosemicarbazone as binding unit, was reported as a colorimetric and fluorescent probe for the detection of fluoride anion. The addition of F? to a solution of probe 1 in tetrahydrofuran resulted in evident naked-eye color change from green-yellow to orange-red under daylight and obvious fluorescence quenching within 3 s. And the detection limit toward F? was calculated to be as low as 2.16 × 10?7 mol/L. 1H NMR titrations proved that the interaction between 1 and fluoride ion: hydrogen bond at low fluoride ion concentration, deprotonation at high fluoride ion concentration. Besides, it exhibited highly sensitivity and selectivity for F? over other examined ions (Cl?, Br?, I?, AcO?, NO3?, HSO4?, H2PO4?) in tetrahydrofuran solution.  相似文献   

9.
A new styryl‐type monomer, 2‐(4‐vinylbenzyloxy)‐1 ‐naphthaldehyde thiosemicarbazone (VNT), was synthesized and then copolymerized with methyl methacrylate (MMA) by reversible addition fragmentation chain transfer polymerization affording a series of poly(MMA‐co‐VNT)s with different functional unit content, predetermined molecular weight, and narrow molecular‐weight distribution. The desired copolymers were structurally confirmed by various spectroscopic characterizations. Colorimetric and fluorescent titration spectra revealed that the copolymers are highly selective toward fluoride anions over other competitive species including Cl?, Br?, I?, H2PO4?, AcO?, and HSO4?. On addition of F?, a remarkable colorless‐to‐yellow color change is easily observed by naked eyes. The influence of the copolymer composition and molecular weight on its sensing capacity was then carefully investigated. The results showed that higher VNT‐incorporation amount within the copolymer chains leads to higher sensitivity toward F? ions. Interestingly, the chromogenic process of the polymeric sensor can be switched back and forth by successively adding F? and HSO4? anions into the dimethyl sulfoxide solution of the polymer, which may be represented by a complementary “IMPLICATION/INHIBIT” logic gate at molecular level using both the ions as the chemical inputs. Based on such a reversible and reproducible sensing system, we designed a molecular‐scale sequential information processing circuit displaying “writing–reading–erasing–reading” behavior and “multiwrite” function in the form of binary logic. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
A new quinoline‐based probe was designed that shows one‐photon ratiometric and two‐photon off–on changes upon detecting Cd2+. It exhibits fluorescence emission at 407 nm originating from quinoline groups in Tris‐HCl (25 mM , pH 7.40), H2O/EtOH (8:2, v/v). Coordination with Cd2+ causes quenching of the emission at 407 nm and simultaneously yields a remarkable redshift of the emission maximum to 500 nm with an isoemissive point at 439 nm owing to an intramolecular charge‐transfer mechanism. Thus, dual‐emission ratiometric measurement with a large redshift (Δλ=93 nm) and significant changes in the ratio (F500/F439) of the emission intensity (R/R0 up to 27) is established. Moreover, the sensor H2L displays excellent selectivity response, high sensitive fluorescence enhancement, and strong binding ability to Cd2+. Coordination properties of H2L towards Cd2+ were fully investigated by absorption/fluorescence spectroscopy, which indicated the formation of a 2:1 H2L/Cd2+ complex. All complexes were characterized by X‐ray crystallography, and TD‐DFT calculations were performed to understand the origin of optical selectivity shown by H2L. Two‐photon fluorescence microscopy experiments have demonstrated that H2L could be used in live cells for the detection of Cd2+.  相似文献   

11.
A new pyrazole-based fluorescent sensor, 5-amino-3-(5-phenyl-1H-pyrrol-2-yl)-1H-pyrazole-4-carboxamide (compound 1), was studied for fluoride anion (F?) detection in organic or water-containing solution. This compound displayed both changes in UV–vis absorption and fluorescence emission spectra upon addition of F?. With increasing of F?, blue emission intensity increases drastically and reaches saturation with 607-fold enhancement at 424 nm. The results indicate that compound 1 has highly selectivity for fluoride detection over other anions, such as Cl?, Br?, I?, HSO4?, H2PO4? and AcO? in DMSO or aqueous DMSO solutions. 1H NMR titration and other experiments confirm that the sensing process is mainly from the deprotonation of the pyrazole–NH in compound 1.  相似文献   

12.
刘玉村  周芊池  李偲婷 《化学通报》2022,85(8):999-102,998
本文设计制备了一种二苯基咪唑衍生化的荧光探针1,利用紫外-可见吸收光谱和荧光光谱研究探针对阴离子的选择性。在探针的乙腈溶液中引入F-后,606 nm处的荧光强度发生明显的猝灭,并且可通过裸眼识别F-。探针对F-的识别表现出高灵敏性以及较好的抗干扰能力,检测限可低至9.43×10-8 mol L-1。此外,制备的1+F-体系对湿度较敏感,在水分影响下该体系的颜色和荧光强度能够实现可逆恢复。  相似文献   

13.
In this study, two perimidinium derivatives ( 1 and 2 ) were designed, synthesized, and developed as efficient fluorescent and colorimetric chemodosisensors for F? in DMSO or more competitive media (DMSO containing 10 % water). In the presence of F?, the yellow and non‐fluorescent solution of 1/2 became colourless and exhibited strong blue fluorescence. This unique spectroscopic behaviour of 1/2 towards F? was attributed to the formation of N‐heterocyclic carbene deprotonated by F?, which immediately reacted with water to give a colourless and fluorescent carbinol. Interestingly, it was found that this carbinol intermediate was unstable and further underwent a redox disproportionation to generate two other optically changed compounds. All the proposed mechanisms for the sensing process have been carefully confirmed by experiments.  相似文献   

14.
A type of fluorescent–magnetic dual‐function nanocomposite, Fe3O4@SiO2@P‐2, was successfully obtained by Cu+‐catalyzed click reaction between acetylene (C?C? H)‐substituted carbazole‐based conjugated polymer ( P‐2) and azide‐terminated silica‐coated magnetic iron oxide nanoparticles (Fe3O4@SiO2–N3). Optical and magnetization analyses indicate that Fe3O4@SiO2@P‐2 exhibits stable fluorescence and rapid magnetic response. The fluorescence of Fe3O4@SiO2@P‐2 was quenched significantly in the presence of I? and gave a detection limit (DL) of ~8.85 × 10?7 M. Given the high binding constant and matching ratio between Hg2+ and I?, the fluorescence of Fe3O4@SiO2@P‐2/I? complex recovered efficiently with the addition of Hg2+. A DL of ~4.17 × 10?7 M was obtained by this probing system. Recycling of Fe3O4@SiO2@P‐2 probe was readily achieved by simple magnetic separation. Results indicate that Fe3O4@SiO2@P‐2 can be used as an “on–off–on” fluorescent switchable and recyclable Hg2+ probe. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3636–3645  相似文献   

15.
A novel fluorescent probe 5‐(diethylamino)‐2‐(((2‐(hydroxymethyl)quinolin‐8‐yl)imino)methyl)phenol ( QS) was synthesized by condensation reaction of 8‐aminoquinoline derivative and 4‐(diethylamino)salicylaldehyde. It was found that the probe QS was capable of high selectivity and sensitivity about specific color and fluorescence changes towards Zn2+ ion in EtOH‐H2O (v/v = 4/1, 0.01 M, Tris–HCl buffer, pH = 7.30) solution. The interaction of QS with Zn2+ ion illustrated a “turn‐on” fluorescence response at 550 nm (λex: 458 nm), moreover, after the subsequent addition of inorganic phosphate (Pi) into the solution above, a “turn‐off” fluorescence response was observed. The sensing ability of the probe QS towards Zn2+ was confirmed by fluorescence titration, UV–Vis titration and HRMS analysis. Besides, the intracellular sensing behavior of QS with Zn2+ and Pi were captured in living PC12 cells. The limit of detection (LOD) for Zn2+ and Pi sensing was found to be 0.03 μM and 0.08 μM, respectively.  相似文献   

16.
A highly selective isophorone‐boronate ester based chemosensor, ( 1 ) , having a dicyanovinyl moiety as a convenient colorimetric probe, has been designed. Different types of anionic analyte such as CH3COO?, ClO4?, Cl?, F?, PF6?, Br? and HSO4? were tested and among them only highly nucleophilic F? anion displayed significant response towards the sensor. Addition of the fluoride anion across the boron atom disrupts the π‐conjugation thereby shifts the absorption wavelength towards the redshift region due to the decrease in the HOMO‐LUMO energy gap and a colour change from yellow to blue is observed under visible light condition. The detection limit of this probe was calculated to be 3.25 × 10—8 M for fluoride anion. The binding constants and the detection limits of the sensor were calculated using absorption titration studies. The silica gel TLC strips dip‐coated by the chemosensor ( 1 ) revealed a colour change from yellow to brick red to naked eye.  相似文献   

17.
Three fluorescent turn‐on probes containing 3,6‐dichloro‐9H‐carbazole as carbazyl part have been designed and synthesized. Among studied anions F?, AcO?, H2PO , Cl?, Br? and I?, AcO? showed the strongest binding ability with all probes. The strong basic anions, such as AcO?, H2PO , and F?, induced a significant red‐shift in absorption and a concomitant increase in fluorescent emission of the probes caused by photoinduced electron transfer (PET). The determination limit of probe 3 (Scheme 1) toward AcO? is 3.0×10?7 M . 1H‐NMR Titration experiments shed light on the nature of the interaction between the probes and the anions. Theoretical investigation further illustrated the possible binding mode in these host? guest interactions and the roles of molecular frontier orbitals in molecular interplay.  相似文献   

18.
We have designed and synthesized a new chemodosimeter, Benzolin-A, which selectively responds to toxic cyanide by dual colorimetric and fluorescence turn-on responses in buffered aqueous DMSO. In the presence of cyanide, we observe absorbance red shift of 108 nm (color changing from colorless to yellow) and fivefold fluorescence enhancement. The 1H NMR studies confirm the nucleophilic addition mechanism, and consistent with the experimental findings, the computational work predicts the feasibility of photoelectron transfer or energy transfer process in the native probe, as well as enhanced internal charge transfer in the Benzolin-A-cyanide adduct. Noteworthily, several background anions, such as F?, Cl?, AcO?, SCN?, HSO4 ?, NO3 ?, Br?, I? and H2PO4 ? exhibit none or insignificant optical perturbations.  相似文献   

19.
Introduction Reduced glutathione (GSH) is a very important tripeptide.1 GSH widely exists in living tissues. In ani-mal organization, the concentration of free glutathione is in the range 0.5—10.0 mmol/L. Usually over 99% of glutathione is present in the reduced form in all organ-isms.2 Intermediates of GSH biosynthesis such as cys-teine, g-glutamyl-cysteine (g-Glu-Cys) or cysteinyl-gly- cine (Cys-Gly) also occur in the cell but at much lower concentrations.3 GSH plays an important bio…  相似文献   

20.
A new compound,[RbHTNR]_∞[HTNR:C_6H(NO_2)_3(OH)O],was synthesized by the reaction of rubidium ni-trate and styphnic acid.The molecular structure was characterized using X-ray diffraction analysis,elementalanalysis and FTIR spectroscopy.The crystalline is monoclinic with space group P2_1/n and the empirical formulaC_6H_2N_3O_8Rb.The unit cell parameters are:a=0.4525 nm,b=1.0777 nm,c=1.9834 nm,β=90.47(2)°,V=0.96725 nm~3,Z=4,D_c=2.263 g/cm~3,Mr=329.58,F(000)=640,μ(Mo Kα)=5.165 mm~(-1).The thermal decompo-sition mechanism of the complex was studied by differential scanning calorimetry(DSC),thermogravimetry-derivative thermogravimetry(TG-DTG)and FTIR techniques.At the linear rate of 10 ℃/min,the thermaldecomposition of the complex showed three mass reducing processes between 60 and 500 ℃,and finally evolvedRbCN and some gaseous products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号