首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio calculated values of fundamental vibrational frequencies and zero-point energies are presented for HTD+, D2T+, T2D+, H2T+, T2H+ and T+3.  相似文献   

2.
The ions (H2O ... H ... OH2)+ and (HO ... H ... OH)? are the simplest stable H+ and OH? hydrates in aqueous acid and base solutions, respectively. Using the attenuated total reflection method, the IR spectra of aqueous HCl and KOH solutions are obtained and the assignment of the H5O2+ and H3O2? vibrational frequencies is performed. The absorption spectrum of the OHO fragment is separated from the spectra of the solutions investigated. This spectrum exhibits a broad continuous band and two rather narrow bands at its background which are assigned to the antisymmetrical stretching vibration and to the bending vibrations of the fragment. A theoretical model is suggested which explains the origin of the continuum by a strong proton-phonon coupling. The model takes into account the large number of low-frequency vibrational modes of the system; the frequency dispersion for these modes is assumed to be sufficiently large. The continuous absorption bandshape is calculated in the Condon approximation. The theoretical absorption curve is in good agreement with experiment at reasonable values of the parameters involved.  相似文献   

3.
The reaction of Ar+ with H2O has been investigated at near-thermal energy. The product ions H2O+ and ArH+ account for 90 and 10% of the total reaction rate, respectively. Kinetic energy measurements and emission spectroscopy of the H2O+ product ions are reported. It is concluded that at least 60% of H2O+ ions are in the X? state with ≈2.4 eV vibrational energy while up to 40% are in the à state with a mean vibrational energy of 1.4 eV; the à state vibrational distribution has been determined. It is shown that both H2O+ states are populated via an energetically “non-resonant” charge transfer process.  相似文献   

4.
Some geometric configurations of the OH+4 and FH+3 ions have been calculated by the SCF MO LCAO method using linear combinations of gaussian lobe functions. The total electronic energies of the systems under study are lower than the sum of the energies for H2O and H+2 or OH+3 and H, and HF and H+2 or FH+2 and H, respectively.  相似文献   

5.
The mobilities of mass-identified H+3 and HeH+ ions in helium and the reaction rate coefficient for HeH+ + H2 → H+3 + He have been measured by a drift-tube quadrupole mass spectrometer at 300 K. The zero-field reduced mobilities of H+3 and HeH+ ions, corrected to 273 K, are 31.0 ± 0.8 and 23.4 ± 0.6 cm2 V?1 s?1 respectively. The reaction rate coefficient was found to be (1.26 + 0.16) × 10?9 cm3s?1 and was observed to be independent of the mean ion kinetic energy in the range from 0.04 to 0.3 eV.  相似文献   

6.
The Raman spectra of solutions of H3 CPH3+ and H3 CPD3+ in aqueous concentrated hydrochloric and deuterochloric acid are reported together with polarisation data. A complete vibrational assignment is given on the basis of C3v, symmetry except for the inactive A2 mode. A set of valence force constants and potential energy distributions have been calculated from the data of the two isotopes H3 CPH3 and H3+ CPD+3. For H3 CPD+3 the potential energy distribution demonstrates strong interaction between the P-C stretching and the symmetrical PD3 deformation mode.  相似文献   

7.
The B?2 state of H2O+ is predissociated twice. First, by the ã4B1 state, giving OH+ + H fragments via spinorbit coupling interaction. Secondly, by a2A state, giving H + OH fragments via spin-orbit coupling and Coriolis interactions. A vibrational analysis of the photoelectron band of the B? state of H2O+ and D2O+ is carried out. This provides the vibrational frequencies of the H2O+, D2O+ and HDO+ ions, as well as a vibrational assignment of the peaks. The H2O+ ion in its B?2B2 state is found to have a OH bond length of 1.12 A and a valence angie of 78°.In order to describe the unimolecular fragmentation process, a distinction is introduced between the totally symmetric, optically active vibrational modes, and the antisymmetric ones which are coupled to the continuum. The former are supplied with photon or electron impact energy, but only the latter are chemically efficient. The dynamics of the dissociation process depends therefore on the couplings among normal modes. This is studied in the framework of two models. In Model 1, it is assumed that, as a result of the anharmonicity of the potential energy surface, only even overtones of the antisymmetric vibration are excited by Fermi resonance. In Model II, excitation of the odd overtones is provided by vibronic coupling. Model II is in better agreement with experiment than Model I. Calculated and experimental results have been compared on the following points: isotopic shift on the appearance potential of OH+ and OD+ ions, shapes of the photoionization curves, fragmentation pattern with 21 eV photons, presence of a unimolecular metastable transition, production of O+ ions. All the vibrational levels situated above the dissociation asymptote are totally predissociated. Autoionization is shown in this case to contribute only to the formation of molecular H2O+ ions, and not to that of the OH+ fragments. For 21 eV electrons, the contribution due to direct ionization is calculated to represent about 25% of the total cross section, the rest being due to autoionization.  相似文献   

8.
An ICR spectrometer fitted with synchronous photon counting equipment is used to study the emission produced by near-thermal (? 0.1 eV) collisions between He+ and H2O (D2). Within the investigated wavelength region, 185 to 500 nm, the only significant emission features are the A3Π (υ' ? 3) → X3Σ? bands in OH+ and OD+, and the A2Σ+ → X2Π(0.0) band in OH and, possibly, in OD. The corresponding excitation rate constants represent only ? 2% of the total He+/H2O (D2O) charge transfer. The resonant electron-jump model for thermal-energy charge exchange is discussed in the light of recent information on the He+/H2O reaction and on the excited states of H2O+ and their excitation by electron and photon impact on H2O (D2O).  相似文献   

9.
The dynamic Renner effect is shown to permit formation of CH+2 in its first excited (2B1) state from low energy collisions of C+ + H2. The consequences for C+ + H2. The consequences for C+ + H2 radiative association are discussed.  相似文献   

10.
Ab initio SCF—MO calculations are presented for H2CN, H2CC?, H2BO and H2CO+, including geometry optimization. One-electron properties are presented and compared with experiment where possible, particularly ESR hyperfine data.  相似文献   

11.
A pulsed ICR cell fitted with synchronous photon counting equipment is used to investigate the emission produced between 185 and 500 nm by near-thermal charge exchange between He+ and C2H2 (C2D2). The emission bands observed are A 2Δ → X2π and (weakly) B2Σ? → X2π in CH(CD) and A 1π → X1Σ in CH+(CD+). Wavelength measurements on the bandheads of the (0,0) and (0,1) bands of CD+ A → X are used to evaluate vibrational constants of CH+(CD+) X1Σ+. The results are (in cm?1): ωe = 2869 ± 27 (2106 ± 20); ωeχe = 65 ± 13 (35 ± 7). These constants are used to calculate Morse-potential Franck—Condon factors and vibrational branching ratios for CH+ and CD+ A → X emission. The spectral distributions and the (relatively low) absolute emission rates produced by He+/C2H2(C2D2) charge exchange are briefly discussed in the light of presently available information on the charge transfer reaction and on the excited states of C2H2?+  相似文献   

12.
Coupled channel calculations of integral cross sections for rotational and vibrational excitation of H2(X1Σ+g by collision with Li+ are reported for 1.2 eV in the c.m. system employing an ab initio potential energy surface and numerical vibration—rotation functions of the Koo?s—Wolniewicz potential function including adiabatic correction. Pure rotational excitation is found to strongly dominate the inelastic scattering occurring at this energy. Preparation of H2 in various allowed non-zero rotational states is seen to enhance the 0 → 1 vibrational cross section by approximately an order of magnitude.  相似文献   

13.
Experimental evidence supporting the “direct” reaction model and the “intermediate complex” model for the reaction CH3+(CH4, H2)C2H5+ are analysed. It is shown that the evidence for the former can equally well be interpreted in terms of a proposed model of persistent complex formation and decay. The plausibility of a “direct” mechanism is discussed and is found to be poor.  相似文献   

14.
15.
The forward and reverse rate coefficients for the reactions (1) O2H+ + H2 ? H3+ + O2 and (2) O2D+ + D2 ? D3+ + O2 have been determined in a SIFT at 80 and 300 K, from which values of the enthalpy and entropy changes in the reactions have been obtained. The data indicate that the proton affinity of H2 is greater than that of O2 by 0.33 ± 0.04 kcal mole?1; similary, the deuteron affinity of D2 is 0.35 ± 0.04 kcal mole?1 greater than that of O2. The measurements of entropy changes confirm that O2H+ has a triplet electronic ground state.  相似文献   

16.
Potential curves for proton transfer in [H5O2]+ and for the dissociation of one OH bond in [H3O]+ were calculated by both ab initio and semi-empirical LCAO MO SCF CI methods. The energy barrier of the symmetric double minimum potential in [H5O2]+ is very sensitive to electron correlation. At an OO distance of 2.74 Å it decreases from the HF value of 9.5 kcal/mole to about 7.0 kcal/mole. The results of the semi-empirical calculations agree well with the ab initio data as long as only relative effects are regarded. The partitioning of correlation energy into contributions of individual electron pairs is very similar for proton transfer in [H5O2]+ and for the dissociation of one OH bond in [H3O]+. In this example the proton transfer appears as a superposition of two “contracted ionic dissociation” processes. An interpretation of the behaviour of correlation during these processes is presented.  相似文献   

17.
Ab initio SCF and CEPA PNO calculations have been performed together with MINDO/3 calculations on the system C2H+7. In agreement with experimental assignment, but in contradiction to MINDO/3 results, the ab initio methods show the CC protonated structure to be more stable than the CH protonated structure. The energy difference is 8.5 kcal/mol at the SCF level and 6.3 kcal/mol with inclusion of electron correlation. Additionally, ΔH0300 for the reaction C2H+s + H2 = C2H+7 and the proton affinity of ethane are computed.  相似文献   

18.
Density functional theory was used to study gas-phase reactions between the Cp2*ZrMe+ cations, where Cp* = C5H5 (1), Me5Cp = C5Me5 (2), and Flu = C13H9 (3), and the ethylene molecule, Cp2*ZrMe+ + C2H4 → Cp2*ZrPr+ → Cp2*ZrAllyl+ + H2. The reactivity of the Cp2*ZrMe+ cations with respect to the ethylene molecule decreased in the series 1 > 32. Substitution in the Cp ring decreased the reactivity of the Cp2*ZrMe+ cations toward ethylene, in agreement with the experimental data on the comparative reactivities of complexes 1 and 3. The two main energy barriers along the reaction path (the formation of the C-C bond leading to the primary product Cp2*ZrPr+ and hydride shift leading to the secondary product Cp2*Zr(H2)Allyl+) vary in opposite directions in the series of the compounds studied. For Flu (3), these barriers are close to each other, and for the other compounds, the formation of the C-C bond requires the overcoming of a higher energy barrier. A comparison of the results obtained with the data on the activity of zirconocene catalysts in real catalytic systems for the polymerization of ethylene led us to conclude that the properties of the catalytic center changed drastically in the passage from the model reaction in the gas phase to real catalytic systems.  相似文献   

19.
Mean amplitudes of vibration for the cations ClF+4, BrF+4 and IF+4 have been calculated using the ‘Method of the Characteristic Vibrations’ and recently revised spectroscopic data. The results are briefly discussed and some comparisons with isoelectronic molecules and other related species are made.  相似文献   

20.
Differences between SiH+5 and CH+5 are more significant than the similarities. The proton affinity of SiH4 exceeds than of CH4 by ≈25 kcal/mol. but the heat of hydrogenation of SiH+3 is smaller than that of CH+3 by nearly the same amount. Like CH+5 the C5 structures of SiH+5 are preferred, but SiH+5 is best regarded as a weaker SiH+3—H2 complex. D3h, C2v, and C4v forms are much higher in energy and SiH+5 should not undergo hydrogen scrambling (pseudorotation) readily, as does CH+5 The neutral BH5 is only weakly bound toward loss H2, and the D3h. C2v, and C4v forms are also high in energy. The contral-atom electronegativities, C+ > B > Si+, control this behavior. The electronegativities also determine the ability to bear positive charges. Thermodynamically. SiH+5 and SiH+3 are more stable than CH+5 and CH+3, respectively; hydride transfer occurs from SiH4 to CH+3 and proton transfer from CH+5 to SiH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号