首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study describes a self‐doping and additive‐free strategy for the synthesis of metal‐nitrogen‐doped porous carbon materials (CMs) via carbonizing well‐tailored precursors, metal‐containing ionic liquids (M‐ILs). The organic skeleton in M‐ILs serves as both carbon and nitrogen sources, while metal ions acts as porogen and metallic dopants. A high nitrogen content, appropriate content of metallic species and hierarchical porosity synergistically endow the resultant CMs (MIBA‐M‐T) as effective electrocatalysts for the oxygen reduction reaction (ORR). MIBA‐Fe‐900 with a high specific surface area of 1567 m2 g?1 exhibits an activity similar to that of Pt/C catalyst, a higher tolerance to methanol than Pt/C, and long‐term durability. This work supplies a simple and convenient route for the preparation of metal‐containing carbon electrocatalysts.  相似文献   

3.
呼小洲  王静  唐靖 《应用化学》2015,32(5):591-596
利用浸泡后的胖大海为碳源, 氯化锌和氯化锂混合盐作为活化剂, 采用炭化胖大海(PC-1)、添加氯化锌(PC-2)或添加氯化锌/氯化锂(PC-3)的胖大海的方法制备了3种多孔碳材料, 并通过三电极体系测试电极材料的电化学性能。结果表明, 3种碳材料在电流密度为0.5 A/g的比电容分别为69、132和228 F/g; 当电流密度增加至10 A/g时, PC-3的比电容仍高达166 F/g, 具有良好的倍率性能。该实验表明, 通过氯化锌/氯化锂复合盐活化胖大海分级多孔碳可作为高性能超级电容器电极材料。  相似文献   

4.
马诗瑶  杜慧  耿闯  王扬  庞琳瀚  赵娜  刘筱  郭永泰  曲江英 《应用化学》2016,33(11):1316-1321
采用废弃蟹壳为碳源,KOH为活化剂原位制备了氮/氧共掺杂多孔炭,并研究其作为电极材料在超级电容器中的应用。 固定蟹壳与KOH的质量比为5:3,考察了煅烧温度对所得炭材料产率、孔结构和氮氧含量的影响。 结果表明,蟹壳基炭材料的孔结构和氮/氧含量可通过改变煅烧温度调变。 随着煅烧温度从500 ℃上升至700 ℃,多孔炭的比表面积和孔体积逐渐增大,而氮/氧含量随温度升高则降低。 采用循环伏安和恒流充放电对所得材料的电化学性能进行测试。 结果表明,所得多孔炭的电化学性能取决于其孔结构与氮/氧表面性质的协同作用,其中煅烧温度为600 ℃所得的多孔炭比表面积为612 m2/g,氮和氧含量分别为3.53%和32.8%,在50 mA/g的电流密度下比电容达到310 F/g,循环1000次比电容仍然保持95%以上,展现出良好的电化学性能。  相似文献   

5.
以空心介孔硅球为模板,酚醛树脂乙醇溶液为碳源制得了分级多孔碳(HPCs).以酸化处理后的HPCs为载体、对甲苯磺酸(p-TSA)为掺杂剂、三氯化铁(FeCl3)为氧化剂,通过原位化学氧化聚合法制备了聚吡咯-分级多孔碳(PPy-HPCs)纳米复合材料.采用场发射扫描电镜(FESEM)、透射电镜(TEM)、傅里叶红外光谱仪(FT IR)、恒流充放电、循环伏安以及交流阻抗等测试技术对复合材料进行了形貌结构和电化学性能的研究.结果表明:聚吡咯成功地包覆在HPCs的表面,随着聚吡咯含量的增加,复合材料的比容量呈现先增大后减小的趋势.当聚吡咯的质量含量为34.9%时,复合材料在电流密度为0.1 A/g时达到最大比容量(316 F/g),在1 A/g的电流密度下循环1 000次后,比容量保持率为95.8%,聚吡咯的引入有效地提高了HPCs电极材料的电化学性能.  相似文献   

6.
《化学:亚洲杂志》2017,12(21):2857-2862
Nanoporous carbon (NC) materials have attracted great research interest for supercapacitor applications, because of their excellent electrochemical and mechanical stability, good electrical conductivity, and high surface area. Although there are many reports on metal–organic framework (MOF)‐derived carbon materials, previous synthetic studies have been hindered by imperfect control of particle sizes and shapes. Here, we show precise control of the particle sizes of MOF‐525 from 100 nm to 750 nm. After conversion of MOF‐525 to NC, the effects of variation of the particle size on the electrochemical performance have been carefully investigated. The results demonstrate that our NC is a potential candidate for practical supercapacitor applications.  相似文献   

7.
使用CTAB作为软模板,水热处理柚子皮,再以碳化和KOH活化过程得到了分级多孔碳(HPC),这种分级多孔碳材料的比表面积高达1 813 m~2·g~(-1),相比于没有水热步骤制备的多孔碳(PC),拥有更加丰富的介孔结构和更大的比表面积。XPS分析结果表明HPC的氧掺杂量更高,会比PC贡献更大的赝电容。三电极测试体系中,HPC的比电容达到285 F·g~(-1)(0.5 A·g~(-1),1 mol·L~(-1)KOH)。同时,组装的两电极对称超级电容器拥有很好的倍率性能,循环12 000次充放电后,比电容依旧保留99%。HPC拥有这样优异的性能归结于较大的比表面积,高氧掺杂量和合理的孔径分布的协同作用。  相似文献   

8.
张韩方  魏风  孙健  荆梦莹  何孝军 《电化学》2019,25(6):764-772
本文以稻壳为碳源,以离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)为模板和辅助活化剂制备了多孔炭材料(PCs). 多孔炭的比表面积达1438 m2·g-1,总孔容达0.75 cm3·g-1. 以PCs为超级电容器电极材料,6 mol·L-1的KOH溶液为电解液组装成扣式电池,在0.05 A·g-1的电流密度下,比电容高达256 F·g-1;当电流密度增大至10 A·g-1,其比电容仍保持在211 F·g-1,展现出好的倍率性能. 所得的多孔炭电极均表现出优异的循环稳定性. 这一工作以BMIMPF6作为模板和辅助活化剂,为合成生物质基超级电容器用多孔炭提供了一种新方法.  相似文献   

9.
Herein, a series of porous nano‐structured carbocatalysts have been fused and decorated by Mo‐based composites, such as Mo2C, MoN, and MoP, to form a hybrid structures. Using the open porosity derived from the pyrolysis of metal–organic frameworks (MOFs), the highly dispersive MoO2 small nanoparticles can be deposited in porous carbon by chemical vapor deposition (CVD). Undergoing different treatments of carbonization, nitridation, and phosphorization, the Mo2C‐, MoN‐, and MoP‐decorated carbocatalysts can be selectively prepared with un‐changed morphology. Among these Mo‐based composites, the MoP@Porous carbon (MoP@PC) composites exhibited remarkable catalytic activity for the hydrogen evolution reaction (HER) in 0.5 m H2SO4 aqueous solution versus MoO2@PC, Mo2C@PC, and MoN@PC. This study gives a promising family of multifunctional lab‐on‐a‐particle architectures which shed light on energy conversion and fuel‐cell catalysis.  相似文献   

10.
High-performance porous carbons derived from tea waste were prepared by hydrothermal treatment, combined together with KOH activation. The heat-treatment-processed materials possess an abundant hierarchical structure, with a large specific surface of 2235 m2 g−1 and wetting-complemental hydrophilicity for electrolytes. In a two-electrode system, the porous carbon electrodes’ built-in supercapacitor exhibited a high specific capacitance of 256 F g−1 at 0.05 A g−1, an excellent capacitance retention of 95.4% after 10,000 cycles, and a low leakage current of 0.014 mA. In our work, the collective results present that the precursor crafted from the tea waste can be a promising strategy to prepare valuable electrodes for high-performance supercapacitors, which offers a practical strategy to recycle biowastes into manufactured materials in energy storage applications.  相似文献   

11.
Hierarchically porous carbon materials with high surface areas are promising candidates for energy storage and conversion. Herein, the facile synthesis of hierarchically porous carbons through the calcination of metal–organic framework (MOF)/chitosan composites is reported. The effects of the chitosan (CS) additive on the pore structure of the resultant carbons are discussed. The corresponding MOF/chitosan precursors could be readily converted into hierarchically porous carbons (NPC‐V, V=1, 2, 4, and 6) with much higher ratios of meso‐/macropore volume to micropore volume (Vmeso‐macro/Vmicro). The derived carbon NPC‐2 with the high ratio of Vmeso‐macro/Vmicro=1.47 demonstrates a high specific surface area of 2375 m2 g?1, and a high pore volume of 2.49 cm3 g?1, as well as a high graphitization degree, in comparison to its counterpart (NPC) without chitosan addition. These excellent features are favorable for rapid ion diffusion/transport, endowing NPC‐2 with enhanced electrochemical behavior as supercapacitor electrodes in a symmetric electrode system, corresponding to a high specific capacitance of 199.9 F g?1 in the aqueous electrolyte and good rate capability. Good cycling stability is also observed after 10 000 cycles.  相似文献   

12.
以聚氨酯发泡剂为碳源和氮源,以氢氧化钾为活化剂,采用一步化学活化法制备了具有高比表面积的氮掺杂活性炭。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N_2吸附-脱附、X射线粉末衍射(XRD)、拉曼光谱(Raman)、光电子能谱(XPS)对碳材料的微观形貌、组成、比表面积和孔道结构进行了表征。结果表明,在700℃活化的碳材料FC700具有最高的比表面积(2 740 m~2·g~(-1))和最大的孔容(1.27 cm~3·g~(-1)),这归因于KOH与泡沫的充分相互作用。在以6.0 mol·L~(-1)KOH为电解液的三电极体系中,当电流密度为0.5 A·g~(-1)时,其比电容达到了452 F·g~(-1)。在组装的对称超级电容器中,其比电容达到了344 F·g~(-1),功率密度为247 W·kg~(-1)时对应的能量密度为11.9 Wh·kg~(-1)。在10 000次循环后电容保持率为98.03%,表现出优异的稳定性。FC700的优异电化学性能可能归因于高的比表面积,大的孔体积和氮原子的掺杂。  相似文献   

13.
A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body‐centered cubic mesoporous phenolic‐resin‐based carbon with KOH. The effect of the KOH/carbon‐weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon‐weight ratio of 6:1 possessed the largest specific surface area (1118 m2 g?1), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g?1 at a current density of 0.1 A g?1 in 1 M H2SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g?1 retained at 20 A g?1) and good long‐term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro‐mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport.  相似文献   

14.
基于羧甲基纤维素钠制备氮掺杂多孔炭及其电容性能研究   总被引:3,自引:0,他引:3  
以羧甲基纤维素钠(NaCMC)为碳源, 利用直接炭化工艺(无需进一步活化)制备多孔炭材料; 然后, 以CO(NH2)2为氮源, 形成了氮掺杂多孔炭材料. 氮的存在形式包括吡啶N、石墨N和吡咯N. 实验结果表明, 羧甲基纤维素钠与CO(NH2)2之间的配比可以有效控制氮存在形式、含量、样品的比表面积及孔的结构等. 样品的电化学性能测试表明, 氮掺杂后多孔炭材料的超电容性能得到了显著提升. 以carbon-N-1:20为例, 其比表面积可达858 m2·g-1, 远高于未经氮掺杂carbon-blank 的463 m2·g-1, 其质量比电容则由94.0 F·g-1提高到了156.7F·g-1.  相似文献   

15.
Biomass‐derived porous carbon BPC‐700, incorporating micropores and small mesopores, was prepared through pyrolysis of banana peel followed by activation with KOH. A high specific BET surface area (2741 m2 g?1), large specific pore volume (1.23 cm3 g?1), and well‐controlled pore size distribution (0.6–5.0 nm) were obtained and up to 65 wt % sulfur content could be loaded into the pores of the BPC‐700 sample. When the resultant C/S composite, BPC‐700‐S65, was used as the cathode of a Li–S battery, a large initial discharge capacity (ca. 1200 mAh g?1) was obtained, indicating a good sulfur utilization rate. An excellent discharge capacity (590 mAh g?1) was also achieved for BPC‐700‐S65 at the high current rate of 4 C (12.72 mA cm?2), showing its extremely high rate capability. A reversible capacity of about 570 mAh g?1 was achieved for BPC‐700‐S65 after 500 cycles at 1 C (3.18 mA cm?2), indicating an outstanding cycling stability.  相似文献   

16.
Hierarchical porous carbon (HPC) with nitrogen doped three dimension open macropore structure was prepared from pig bone, and applied for the support material for platinum nanoparticle (Pt NP) electrocatalyst. Compared with carbon black supported Pt NP electrocatalysts, the Pt/HPC exhibited larger electrochemical active surface area and enhanced catalytic properties for the oxygen reduction reaction (ORR) in terms of on‐set potential, current density, mass activity and stability. The superior catalytic activity is mainly attributed to the high surface area, hierarchical porous structures and the nitrogen‐doped surface properties of the HPC, indicating it is a promising support material for the ORR electrocatalysts.  相似文献   

17.
The first examples of core–shell porous molecular crystals are described. The physical properties of the core–shell crystals, such as surface hydrophobicity, CO2 /CH4 selectivity, are controlled by the chemical composition of the shell. This shows that porous core–shell molecular crystals can exhibit synergistic properties that out‐perform materials built from the individual, constituent molecules.  相似文献   

18.
This research presents a simple and efficient method to synthesize porous nitrogen‐doped carbon microspheres (PNCM) by the carbonization of microporous poly(terephthalaldehyde‐pyrrole) organic frameworks (PtpOF). The common KOH activation process is used to tune the porous texture of the PNCM and produce an activated‐PNCM (A‐PNCM). The PNCM and A‐PNCM with specific surface area of 921 and 1303 m2 g?1, respectively, are demonstrated as promising candidates for EDLCs. At a current density of 0.5 A g?1, the specific capacitances of the PNCM and A‐PNCM are 248 and 282 F g?1, respectively. At the relatively high current density of 20 A g?1, the capacitance remaining is 95 and 154 F g?1, respectively. Capacity retention of the A‐PNCM is more than 92 % after 10 000 charge/discharge cycles at a current density of 2 A g?1.  相似文献   

19.
《中国化学会会志》2017,64(9):1041-1047
Activated carbons with a high mesoporous structure were prepared by a one‐stage KOH activation process without the assistance of templates and further used as adsorbents for CO2 capture. The physical and chemical properties as well as the pore structures of the resulting mesoporous carbons were characterized by N2 adsorption isotherms, scanning electron microscopy (SEM ), X‐ray diffraction (XRD ), Raman spectroscopy, and Fourier transform infrared (FTIR ) spectroscopy. The activated carbon showed greater specific surface area and mesopore volume as the activation temperature was increased up to 600°C, showing a uniform pore structure, great surface area (up to ~815 m2/g), and high mesopore ratio (~55%). The activated sample exhibited competitive CO2 adsorption capacities at 1 atm pressure, reaching 2.29 and 3.4 mmol/g at 25 and 0°C, respectively. This study highlights the potential of well‐designed mesoporous carbon as an adsorbent for CO2 removal and widespread gas adsorption applications.  相似文献   

20.
Core–shell hierarchical porous carbon spheres (HPCs) were synthesized by a facile hydrothermal method and used as host to incorporate sulfur. The microstructure, morphology, and specific surface areas of the resultant samples have been systematically characterized. The results indicate that most of sulfur is well dispersed over the core area of HPCs after the impregnation of sulfur. Meanwhile, the shell of HPCs with void pores is serving as a retard against the dissolution of lithium polysulfides. This structure can enhance the transport of electron and lithium ions as well as alleviate the stress caused by volume change during the charge–discharge process. The as‐prepared HPC‐sulfur (HPC‐S) composite with 65.3 wt % sulfur delivers a high specific capacity of 1397.9 mA h g?1 at a current density of 335 mA g?1 (0.2 C) as a cathode material for lithium–sulfur (Li‐S) batteries, and the discharge capacity of the electrode could still reach 753.2 mA h g?1 at 6700 mA g?1 (4 C). Moreover, the composite electrode exhibited an excellent cycling capacity of 830.5 mA h g?1 after 200 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号