首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical nuclear polarization (ONP) has been used to detect magnetic resonance transitions in the rf region of both the excited and the ground state of aromatic molecules in a crystalline environment. The possibilities of the method are demonstrated and the kind of independent information available on molecular parameters is pointed out.  相似文献   

2.
An investigation of the photophysics of two complexes, [Pt((t)Bu3tpy)(C triple bond C-perylene)]BF4 (1) and Pt((t)Bu2bpy)(C triple bond C-perylene)2 (2), where (t)Bu3tpy is 4,4',4'-tri( tert-butyl)-2,2':6',2'-terpyridine, (t)Bu2bpy is 4,4'-di( tert-butyl)-2,2'-bipyridine, and C triple bond C-perylene is 3-ethynylperylene, reveals that they both exhibit perylene-centered ligand localized excited triplet states ((3)IL) upon excitation with visible light. These complexes do not display any significant photoluminescence at room temperature but readily sensitize (1)O2 in aerated CH2Cl2 solutions, as evidenced by its characteristic emission near 1270 nm. The transient absorption difference spectra were compared to bi- and tridentate phosphine peryleneacetylides intended to model the (3)IL peryleneacetylide excited states in addition to the related phenylacetylide-bearing polyimine analogues, with the latter model being the respective triplet charge-transfer ((3)CT) excited states. The transient difference spectra of the two title compounds display excited-state absorptions largely attributable to perylene localized (3)IL states yet exhibit somewhat attenuated excited-state lifetimes relative to those of the phosphine model chromophores. The abbreviated lifetimes in 1 and 2 may suggest the involvement of the energetically proximate (3)CT triplet state exerting an influence on excited-state decay, and the effect appears to be stronger in 1 relative to 2, consistent with the energies of their respective (3)CT states.  相似文献   

3.
Bodipy derivatives containing excited state intramolecular proton transfer (ESIPT) chromophores 2-(2-hydroxyphenyl) benzothiazole and benzoxazole (HBT and HBO) subunits were prepared (7-10). The compounds show red-shifted UV-vis absorption (530-580 nm; ε up to 50000 M(-1) cm(-1)) and emission compared to both HBT/HBO and Bodipy. The new chromophores show small Stokes shift (45 nm) and high fluorescence quantum yields (Φ(F) up to 36%), which are in stark contrast to HBT and HBO (Stokes shift up to 180 nm and Φ(F) as low as 0.6%). On the basis of steady state and time-resolved absorption spectroscopy, as well as DFT/TDDFT calculations, we propose that 7-9 do not undergo ESIPT upon photoexcitation. Interestingly, nanosecond time-resolved transient absorption spectroscopy demonstrated that Bodipy-localized triplet excited states were populated for 7-10 upon photoexcitation; the lifetimes of the triplet excited states (τ(T)) are up to 195 μs. DFT calculations confirm the transient absorptions are due to the triplet state. Different from the previous report, we demonstrated that population of the triplet excited states is not the result of ESIPT. The compounds were used as organic triplet photosensitizers for photooxidation of 1,5-dihydroxylnaphthalene. One of the compounds is more efficient than the conventional [Ir(ppy)(2)(phen)][PF(6)] triplet photosensitizer. Our result will be useful for design of new Bodipy derivatives, ESIPT compounds, and organic triplet photosensitizers, as well as for applications of these compounds in photovoltaics, photocatalysis and luminescent materials, etc.  相似文献   

4.
The use of ONP to determine absolute signs of fine and hyperfine tensor elements in excited triplet states is developed theoretically and demonstrated experimentally. Convenient ONP-rules are formulated which relate the desired signs of the tensor elements to quantities which can be extracted from the measured ONP field dependence. Application is made to the ONP originating from the radical pair triplet state formed after photochemical hydrogen abstraction from a fluorene host molecule and hydrogen transfer to an acridine guest molecule in doped single crystals. Negative fine and hyperfine tensor elements are determined and confirm the structural model of a radical pair product inferred from EPR-data.  相似文献   

5.
The preparation of rhenium(I) tricarbonyl polypyridine complexes that show a strong absorption of visible light and long-lived triplet excited state and the application of these complexes as triplet photosensitizers for triplet-triplet annihilation (TTA) based upconversion are reported. Imidazole-fused phenanthroline was used as the N^N coordination ligand, on which different aryl groups were attached (Phenyl, Re-0; Coumarin, Re-1 and naphthyl, Re-2). Re-1 shows strong absorption of visible light (ε = 60,800 M(-1) cm(-1) at 473 nm). Both Re-1 and Re-2 show long-lived T(1) states (lifetime, τ(T), is up to 86.0 μs and 64.0 μs, respectively). These properties are in contrast to the weak absorption of visible light and short-lived triplet excited states of the normal rhenium(I) tricarbonyl polypyridine complexes, such as Re-0 (ε = 5100 M(-1) cm(-1) at 439 nm, τ(T) = 2.2 μs). The photophysical properties of the complexes were fully studied with steady state and time-resolved absorption and emission spectroscopes, as well as DFT calculations. The intra-ligand triplet excited state is proposed to be responsible for the exceptionally long-lived T(1) states of Re-1 and Re-2. The Re(I) complexes were used as triplet photosensitizers for TTA based upconversion and an upconversion quantum yield up to 17.0% was observed.  相似文献   

6.
A scheme has been developed to eliminate virtually all signal intensity dependence on 1JCH in polarization transfers between 1H and 13C nuclei, reducing differences in signal intensity to only 1.5% over the entire natural 1JCH range. The scheme relies on the summation of time-domain data acquired with four suitably selected Delta delays so that the J dependence is essentially canceled in the final, signal-averaged free-induction decay. These Delta delays have been incorporated into the DEPT pulse sequence to create sensitivity-enhanced experiments for collecting quantitative 13C{1H} spectra. Four experiments, each with unique read pulse angles, give quantitative spectra with 200-300% more sensitivity than conventional 13C spectra acquired with inverse-gated 1H decoupling. The experiments are ideal for recording spectra with improved quantitative information or for substantially reducing the long acquisition times indicative of quantitative 13C experiments. The ability of the experiments to provide quantitative spectra was demonstrated with a simple ethylbenzene solution, however, they can easily be adapted to various applications for analysis of complex mixtures.  相似文献   

7.
A quantitative method to record (1)H-(13)C correlation NMR spectra (Q-HSQC) is presented. The suppression of (1)J(CH)-dependence is achieved by modulating the polarization transfer delays of HSQC. In addition, the effect of homonuclear couplings, as well as relaxation during the pulse sequence are discussed. We developed the Q-HSQC approach for the quantitative analysis of wood lignin, a complex polymer where it has been difficult to obtain reliable data on the relative amounts of different structural units. The current method is applicable to a variety of complex mixtures, where normal 1D (1)H- and (13)C-NMR methods fail.  相似文献   

8.
ZFS parameters for the title chlorophylls in both ordinary and fully deuterated form have been determined under experimental conditions that allow the aggregation state of the chlorophylls to be specified. The triplet state spectra are polarized. The electron spin polarization (ESP) can be analyzed by a simple scheme, and is found to be sensitive to the aggregation state of the chlorophyll. Comparison of in vivo and in vitro bacteriochlorophyll spectra supports the chlorophyll special pair proposal for the structure of in vivo photo-reactive chlorophyll.  相似文献   

9.
The class of compounds (RCp)2MX2, where M is a group IV metal, Cp is cyclopentadienyl, R is an alkyl, and X is a halide, has been of continuing interest as precursors for olefin coordination polymerization catalysts. In this communication, we demonstrate that the technique of optically detected magnetic resonance (ODMR) reveals subtle differences in the composition of the frontier molecular orbitals associated with the nature of the alkyl substituents on the Cp rings.  相似文献   

10.
The electronic spectrum of cyclopropene has been studied using multiconfigurational second-order perturbation theory (CASPT2) with extended ANO-type basis sets. The calculation comprises two valence states and the 3s, 3p, 3d members of the Rydberg series converging to the π and σ ionization limits. A total of twenty singlet and twenty triplet excited states have been analyzed. The results confirm the valence nature of the lowest energy singlet-singlet band and yield a conclusive assignment: the first dipole-allowed transition in cyclcopropene is due to absorption to a (σ → π*) state. The (π → π*) (V) state is interleaved among a number of Rydberg states in the most intense band of the system. The remaining spectral bands are due to Rydberg transitions of higher energy. The two lowest singlet-triplet transitions involve the same valence states. The results are in agreement with available experimental data and provide a number of new assignments of the experimental spectra.  相似文献   

11.
The emitting triplet state of cyclometalated Pt(thpy)(CO)(Cl) monomers ((thpy)(-) = 2-(2'-thienylpyridinate), frequently also abbreviated as (2-thpy)(-)) is investigated at T = 1.2 K (typically) by use of the complementary methods of high-resolution optical spectroscopy and of optically detected magnetic resonance (ODMR) spectroscopy. Such a complimentary investigation is carried out for the first time for a Pt(II) compound. In solution, oligomer or short linear chain formation is also observed. However, the monomers can be investigated selectively, when they are dissolved in a relatively inert n-octane matrix (Shpol'skii matrix). This allows us to determine the energies of the T(1) triplet substates I, II, and III relative to the electronic ground state S(0)(0), the zero-field splittings (ZFSs) of T(1), and emission decay time constants (I/II <--> 0, 18012.5 cm(-1); III <--> 0, 18016.3 cm(-1); DeltaE(I,II) = 0.05437 cm(-1) (1.631 GHz), DeltaE(I,III) = 3.8 cm(-1) (114 GHz); tau(I) = 120 micros, tau(II) = 45 micros, tau(III) = 35 micros; spin-lattice relaxation time for the processes III --->I/II, tau(SLR) = 3.0 micros). The vibrational satellite structure observed in the emission of the T(1) state to the singlet ground state S(0) is also discussed. Moreover, it is possible to estimate the intersystem crossing time from the excited singlet state S(1) at 22952 cm(-1) to the triplet state T(1) to approximately 5 ps. The T(1) state is assigned as a thpy-ligand-centered (3)pipi* state with small metal-to-ligand charge-transfer (MLCT) admixtures. A comparison of Pt(thpy)(CO)(Cl) to a series of other organometallic Pt(II) compounds, such as heteroleptic Pt(ppy)(CO)(Cl) ((ppy)(-) = phenylpyridinate), Pt(dppy)(CO) ((dppy)(2-) = diphenylpyridinate), and Pt(i-biq)(CN)(2) (i-biq = 2,2'-bisisoquinoline) and homoleptic Pt(thpy)(2) and Pt(ppy)(2), is carried out. (The structures are shown in Figure 7.) Trends of photophysical properties are discussed. In particular, by chelation of two equal ligands the pattern of ZFS is strongly altered, resulting in a significant increase of the MLCT participation in the lowest triplet state of these organometallic compounds. This new observation represents an interesting further step concerning chemical tunability of photophysical properties.  相似文献   

12.
A number of mono(imidazole)-ligated complexes of perchloro(meso-tetramesitylporphyrinato)iron(III), [Fe(TMP)L]ClO(4), have been prepared, and their spin states have been examined by (1)H NMR, (13)C NMR, and EPR spectroscopy as well as solution magnetic moments. All the complexes examined have shown a quantum mechanical spin admixed state of high and intermediate-spin (S = 5/2 and 3/2) states though the contribution of the S = 3/2 state varies depending on the nature of axial ligands. While the complex with extremely bulky 2-tert-butylimidazole (2-(t)()BuIm) has exhibited an essentially pure S = 5/2 state, the complex with electron-deficient 4,5-dichloroimidazole (4,5-Cl(2)Im) adopts an S = 3/2 state with 30% of the S = 5/2 spin admixture. On the basis of the (1)H and (13)C NMR results, we have concluded that the S = 3/2 contribution at ambient temperature increases according to the following order: 2-(t)BuIm < 2-(1-EtPr)Im < 2-MeIm 相似文献   

13.
The present study utilizes vibrational sum frequency generation (SFG) spectroscopy to study changes in the surface crystallinity of various peracetylated sugars, a class of materials that have a high affinity for carbon dioxide (CO(2)). Studies of the solid-air interface of acetylated beta-cyclodextrin (Ac-beta-CD) and sucrose octaacetate (SOA) show that diffuse reflectance SFG spectroscopy is sensitive to changes in crystallinity from processing with either heat or solvation in CO(2), due to the loss of signal after glassification occurs. beta-d-Glucose pentaacetate (Ac-beta-GLC) was used as a control for this experiment due to the fact that it does not undergo a crystalline phase transition, regardless of processing conditions. The crystalline to amorpohous transitions of these bulk materials were verified using differential scanning calorimetry (DSC) as a function of thermal and CO(2) processing. In addition, preliminary results suggest that the SFG technique is sensitive in detecting the degree of crystallinity at the interface as a result of incomplete processing and presents new opportunities for the examination and detection of surface crystallinity changes.  相似文献   

14.
Photochemical properties of photoinduced omega-bond dissociation in p-benzoylbenzyl phenyl sulfide (BBPS) in solution were investigated by time-resolved EPR and laser flash photolysis techniques. BBPS was shown to undergo photoinduced omega-bond cleavage to yield the p-benzoylbenzyl radical (BBR) and phenyl thiyl radical (PTR) at room temperature. The quantum yield (phi(rad)) for the radical formation was found to depend on the excitation wavelength, i.e., on the excitation to the excited singlet states, S2 and S1 of BBPS; phi(rad)(S2) = 0.65 and phi(rad)(S1) = 1.0. Based on the CIDEP data, these radicals were found to be produced via the triplet state independent of excitation wavelength. By using triplet sensitization of xanthone, the efficiency (alpha(rad)) of the C-S bond fission in the lowest triplet state (T1) of BBPS was determined to be unity. The agreement between phi(rad)(S1) and alpha(rad) values indicates that the C-S bond dissociation occurs in the T1 state via the S1 state due to a fast intersystem crossing from the S1 to the T1 state. In contrast, the wavelength dependence of the radical yields was interpreted in terms of the C-S bond cleavage in the S2 state competing with internal conversion from the S2 to the S1 state. The smaller value of phi(rad)(S2) than that of phi(rad)(S1) was proposed to originate from the geminate recombination of singlet radical pairs produced by the bond dissociation via the S2 state. Considering the electronic character of the excited and dissociative states in BBPS showed a schematic energy diagram for the omega-bond dissociation of BBPS.  相似文献   

15.
Cycloreversion of 1,2,3,4-tetraphenylcyclobutanes 1a,b and oxetane 2 is achieved using (thia)pyrylium salts as electron-transfer photosensitizers. Radical cation intermediates involved in the electron-transfer process have been detected using laser flash photolysis. The experimental results are consistent with the reaction taking place from the triplet excited state of the sensitizer.  相似文献   

16.
A small RNA motif is used as a target for ligand-based NMR-screening by saturation transfer difference (STD) NMR experiments. The prerequisites for using a small RNA target in STD experiments, such as saturation time, frequency, and pulses, are discussed. We also show that it is of advantage to use D2O as solvent instead of H2O due to the reduced R1 relaxation rate in D2O. The 27-nucleotide model of the ribosomal A-site was known to bind the aminoglycoside paromomycin with high affinity. This binding interaction could be detected easily, proving the effectiveness of STD NMR experiments as a screening tool for RNA-ligand interactions.  相似文献   

17.
Pt(II) Schiff base complexes containing pyrene subunits were prepared using the chemistry-on-complex approach. This is the first time that supramolecular photochemical approach has been used to tune the photophysical properties of Schiff base Pt(II) complexes, such as emission wavelength and lifetimes. The complexes show intense absorption in the visible region (ε = 13100 M(-1) cm(-1) at 534 nm) and red phosphorescence at room temperature. Notably, much longer triplet excited state lifetimes (τ = 21.0 μs) were observed, compared to the model complexes (τ = 4.4 μs). The extension of triplet excited state lifetimes is attributed to the establishment of equilibrium between the metal-to-ligand charge-transfer ((3)MLCT) state (coordination centre localized) and the intraligand ((3)IL) state (pyrene localized), or population of the long-lived (3)IL triplet excited state. These assignments were fully rationalized by nanosecond time-resolved difference absorption spectra, 77 K emission spectra and density functional theory calculations. The complexes were used as triplet sensitizers for triplet-triplet-energy-tranfer (TTET) processes, i.e. luminescent O(2) sensing and triplet-triplet annihilation (TTA) based upconversion. The O(2) sensitivity (Stern-Volmer quenching constant) of the complexes was quantitatively evaluated in polymer films. The results show that the O(2) sensing sensitivity of the pyrene containing complex (K(SV) = 0.04623 Torr(-1)) is 15-fold of the model complex (K(SV) = 0.00313 Torr(-1)). Furthermore, significant TTA upconversion (upconversion quantum yield Φ(UC) = 17.7% and the anti-Stokes shift is 0.77 eV) was observed with pyrene containing complexes being used as triplet sensitizers. Our approach to tune the triplet excited states of Pt(II) Schiff base complexes will be useful for the design of phosphorescent transition metal complexes and their applications in light-harvesting, photovoltaics, luminescent O(2) sensing and upconversion, etc.  相似文献   

18.
Three medium-size optically active molecules have been studied to make a guess at candidates suitable for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. The criterion for experimental detection is given by the magnitude of the isotropic part of nuclear magnetic shielding polarisability tensors, related to a pseudoscalar of opposite sign for the two enantiomers. The pseudoscalar shielding polarisability at the (17)O nucleus in N-methyloxaziridine, calculated at the Hartree-Fock level, is approximately 7.8 x10(-)(17) mV(-)(1). To obtain an experimentally observable magnetic field induced at the (17)O nucleus in N-methyloxaziridine, electric fields as large as approximately 10(7) - 10(8) Vm(-)(1) should be applied to the probe. The molecular electric dipole moment induced by precession of the magnetic dipole of the (17)O nucleus in a magnetic field of 10 T is, in absolute value, approximately 8.8 x 10(-)(42) Cm. The estimated rf-voltage at a resonance circuit is approximately 10 nV. Smaller values have been estimated for N, C, and H nuclei in 1,3-dimethylallene and 2-methyloxirane.  相似文献   

19.
A series of newly synthesized Os(II) and Ag(I) complexes exhibit remarkable ratiometric changes of intensity for phosphorescence versus fluorescence that are excitation wavelength dependent. This phenomenon is in stark contrast to what is commonly observed in condensed phase photophysics. While the singlet to triplet intersystem crossing (ISC) for the titled complexes is anomalously slow, approaching several hundred picoseconds in the lowest electronic excited state (S(1) → T(1)), higher electronic excitation leads to a much accelerated rate of ISC (10(11)-10(12) s(-1)), which is competitive with internal conversion and/or vibrational relaxation, as commonly observed in heavy transition metal complexes. The mechanism is rationalized by negligible metal d orbital contribution in the S(1) state for the titled complexes. Conversely, significant ligand-to-metal charge transfer character in higher-lying excited states greatly enhances spin-orbit coupling and hence the ISC rate. The net result is to harvest high electronically excited energy toward triplet states, enhancing the phosphorescence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号