首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we describe a new method of automated sample preparation for multiplexed biological analysis systems that use flow cytometry fluorescence detection. In this approach, color-encoded microspheres derivatized to capture particular biomolecules are temporarily trapped in a renewable surface separation column to enable perfusion with sample and reagents prior to delivery to the detector. This method provides for separation of the biomolecules of interest from other sample matrix components as well as from labeling solutions. After sample preparation, the beads can be released from the renewable surface column and delivered to a flow cytometer for direct on-bead analysis one bead at a time. Using mixtures of color-encoded beads derivatized for various analytes yields suspension arrays for multiplexed analysis. Development of this approach required a new technique for automated capture and release of the color-encoded microspheres within a fluidic system. We developed a method for forming a renewable filter and demonstrate its use for capturing microspheres that are too small to be easily captured in previous flow cells for renewable separation columns. The renewable filter is created by first trapping larger beads in the flow cell, and then smaller beads are captured either within or on top of the bed of larger beads. Both the selective microspheres and filter bed are automatically emplaced and discarded for each sample. A renewable filter created with 19.9 μm beads was used to trap 5.6 μm optically encoded beads with trapping efficiencies of 99%. The larger beads forming the renewable filter did not interfere with the detection of color-encoded 5.6 μm beads by the flow cytometer fluorescence detector. The use of this method was demonstrated with model reactions for a variety of bioanalytical assay types including a one-step capture of a biotinylated label on Lumavidin beads, a two-step sandwich immunoassay, and a one-step DNA binding assay. A preliminary demonstration of multiplexed detection of two analytes using color-encoded beads was also demonstrated. The renewable filter for creating separation columns containing optically encoded beads provides a general platform for coupling renewable surface methods for sample preparation and analyte labeling with flow cytometry detectors for suspension array multiplexed analyses.  相似文献   

2.
In this study, an integrated approach is developed for the formation, identification and biological characterization of electrochemical conversion products of p38α mitogen-activated protein kinase inhibitors. This work demonstrates the hyphenation of an electrochemical reaction cell with a continuous-flow bioaffinity assay and parallel LC-HR-MS. Competition of the formed products with a tracer (SKF-86002) that shows fluorescence enhancement in the orthosteric binding site of the p38α kinase is the readout for bioaffinity. Parallel HR-MSn experiments provided information on the identity of binders and non-binders. Finally, the data produced with this on-line system were compared to electrochemical conversion products generated off-line. The electrochemical conversion of 1-{6-chloro-5-[(2R,5S)-4-(4-fluorobenzyl)-2,5-dimethylpiperazine-1-carbonyl]-3aH-indol-3-yl}-2-morpholinoethane-1,2-dione resulted in eight products, three of which showed bioaffinity in the continuous-flow p38α bioaffinity assay used. Electrochemical conversion of BIRB796 resulted, amongst others, in the formation of the reactive quinoneimine structure and its corresponding hydroquinone. Both products were detected in the p38α bioaffinity assay, which indicates binding to the p38α kinase.  相似文献   

3.
Determination of SARS-coronavirus by a microfluidic chip system   总被引:4,自引:0,他引:4  
Zhou X  Liu D  Zhong R  Dai Z  Wu D  Wang H  Du Y  Xia Z  Zhang L  Mei X  Lin B 《Electrophoresis》2004,25(17):3032-3039
  相似文献   

4.
On-chip fluorescence determination of sulfite and nitrite with N-(9-acridinyl)maleimide (NAM) and 2,3-diaminonaphthalene (DAN) has been developed using a novel fluorescence detection unit for microchip analysis. Usually, these fluorescence reagents are derivatized and detected separately in microchip analysis because different fluorescence wavelengths are emitted. The proposed fluorescence detection unit has optical fibers with no optical filter, and plural wavelengths of fluorescence were detected sensitively, even in the microchip. In this study, the simultaneous determination of sulfite and nitrite in environmental samples was performed with a polymer microchip analysis system. The calibration curves of sulfite and nitrite showed linear relations (R2 = 0.998 (sulfite) and R2 = 0.990 (nitrite)), and the relative standard deviations (RSD) for 4 runs were 2.1% (20 microM sulfite) and 1.3% (20 microM nitrite), respectively. The proposed method was applied to the recovery test of sulfite and nitrite in environmental samples.  相似文献   

5.
The development of a chip-based sensor array composed of individually addressable polystyrene-poly(ethylene glycol) and agarose microspheres has been demonstrated. The microspheres are selectively arranged in micromachined cavities localized on silicon wafers. These cavities are created with an anisotropic etch and serve as miniaturized reaction vessels and analysis chambers. A single drop of fluid provides sufficient analysis media to complete approximately 100 assays in these microetch pits. The cavities possess pyramidal pit shapes with trans-wafer openings that allows for both fluid flow through the microreactors/analysis chambers and optical access to the chemically sensitive microspheres. Identification and quantitation of analytes occurs via colorimetric and fluorescence changes to receptor and indicator molecules that are covalently attached to termination sites on the polymeric microspheres. Spectral data are extracted from the array efficiently using a charge-coupled device allowing for the near-real-time digital analysis of complex fluids. The power and utility of this new microbead array detection methodology is demonstrated here for the analysis of complex fluids containing a variety of important classes of analytes including acids, bases, metal cations, metabolic cofactors, and antibody reagents.  相似文献   

6.
Peng XY  Li PC 《Lab on a chip》2005,5(11):1298-1302
A 3-dimensional liquid flow control method has been developed to manipulate and retain a single yeast cell freely in a microchip. This method allows us to carry out single-cell experiments by selecting any desired single cell from a group, retaining the cell for cellular signal detection, and delivering reagents to the cell during continual detection and observation without any negative impact from the liquid flow on the live cell. The cell was scanned back and forth across an observation window in order to extract pure cellular fluorescent signals. Different scanning methods were discussed for effective collection of the cellular fluorescent signal. The cell scanning technique results in many advantages, such as distinguishing a small part of a cell, allowing for background correction and monitoring the switch of reagents. In addition, it is possible to evaluate the photobleaching effects on both the background and cellular fluorescence, with the latter found to be less significant in a restricted cellular environment.  相似文献   

7.
A miniaturized capillary electrophoretic (CE) microchip device for the simultaneous measurements of lactate and glucose is described. The new microchip bioassay protocol integrates an electrophoretic separation of lactate and glucose, post-column enzymatic reactions of these metabolites with their respective oxidase enzymes, and an amperometric (anodic) detection of enzymatically-liberated hydrogen peroxide at a gold-coated thick-film carbon detector. Factors influencing the response have been examined and optimized, and the analytical performance has been characterized. Applicability of the microchip assay to clinical samples, such as serum and blood, is demonstrated. The microchip protocol obviates cross enzymatic reactions and interferences from major oxidizable constituents common to dual glucose-lactate enzyme electrodes. Such ability to rapidly separate and quantitate lactate and glucose on a small microchip platform should find important clinical and biotechnological applications.  相似文献   

8.
Borowsky J  Collins GE 《The Analyst》2007,132(10):958-962
The ability to separate complex mixtures of analytes has made capillary electrophoresis (CE) a powerful analytical tool since its modern configuration was first introduced over 25 years ago. The technique found new utility with its application to the microfluidics based lab-on-a-chip platform (i.e., microchip), which resulted in ever smaller footprints, sample volumes, and analysis times. These features, coupled with the technique's potential for portability, have prompted recent interest in the development of novel analyzers for chemical and biological threat agents. This article will comment on three main areas of microchip CE as applied to the separation and detection of threat agents: detection techniques and their corresponding limits of detection, sampling protocol and preparation time, and system portability. These three areas typify the broad utility of lab-on-a-chip for meeting critical, present-day security, in addition to illustrating areas wherein advances are necessary.  相似文献   

9.
We describe the potential of microchip electrophoresis with a Hitachi SV1210, which can be used to evaluate the integrity of total RNA, for the analysis of mRNA expression. The ribonuclease (RNase) protection assay was performed by using microchip electrophoresis with cyanine 5 (Cy5) labeled 248-base antisense RNA probe (riboprobe) encoding adipose-type fatty acid binding protein (A-FABP) as the riboprobe. The fluorescence intensity corresponding to the protected RNA fragment increased in a dose-dependent manner with respect to the complementary strand RNA. Results were obtained in 120 s, and the same amount of Cy5-labeled antisense riboprobe as used in the conventional method can be used. Furthermore, 8 times more sensitive detection of mRNA by microchip electrophoresis could be obtained. An obvious increase in the mRNA expression of A-FABP, which is known as a differentiation marker of adipocytes, occurred during the adipocyte differentiation of 3T3-L1 cells. These results clearly indicate the potential of microchip electrophoresis for the analysis of mRNA expression in cells.  相似文献   

10.
We propose the use of lab-on-a-chip technology for measuring gaseous chemical pollutants, and describe the development of a microchip for the detection of nitrogen dioxide (NO2) in air. A microchip fabricated from quartz glass has been developed for handling the following three functions, gas absorption, chemical reaction and fluorescence detection. Channels constructed in the microchip were covered with porous glass plates, allowing nitrogen dioxide to penetrate into the triethanolamine (TEA) flowing within the microchannel beneath. The nitrogen dioxide was then mixed with TEA and reacted with a suitable fluorescence reagent in the chemical reaction chamber in the microchip. The reacted solution was then allowed to flow into the fluorescence detection area to be excited by an ultraviolet light-emitting diode (UV-LED), and the fluorescence was detected using a photomultiplier tube (PMT). The reaction time, reagent concentration, pH, flow rate and other measurement conditions were optimised for analysis of nitrogen dioxide in air. Preliminary studies with standardized test solutions revealed quantitative measurements of nitrite ion (NO2-), which corresponded to atmospheric nitrogen dioxide in the range of 10-80 ppbv.  相似文献   

11.
A sensitive on-chip acetylcholinesterase (AChE) assay that serves as a basis for the development of a fully integrated on-chip AChE-inhibitor detection assay is presented. The sequential steps required for the on-chip analysis process were integrated into a microchip. Transport and mixing of the reagents occurred by a combination of electroosmosis and electrophoresis using computer-controlled electrokinetic transport. AChE-catalyzed hydrolysis of acetylthiocholine to thiocholine was determined by on-chip reaction of thiocholine with eosinmaleimide, and the resulting thioether was electrophoretically separated and detected by laser-induced fluorescence (LIF). Enzyme-substrate mixing and reaction by confluent flow of reagents was compared with electrophoretically mediated microanalysis (EMMA), based on injection of an enzyme plug, and the utilization of differences in electrophoretic mobility as a driving force for efficient mixing and reaction. Both methods yielded similar results, however the EMMA-plug technique is preferable. The EMMA-plug technique was optimized for length and pushing time of enzyme plug, length of dyes mixture plug, acetylthiocholine concentration, and detector location. Detection of O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and paraoxon, two AChE inhibitors, was demonstrated by off-chip mixing of the inhibitor and AChE, followed by the on-chip AChE assay. Limit of detection of VX for 5.5 min incubation and of paraoxon for 8 min incubation was 4 × 10−10 and 4 × 10−7 M, respectively. Utilization of the AChE microchip assay for inhibition kinetics was demonstrated also by evaluation of the inhibitor-enzyme bimolecular reaction constant (ki). The evaluated ki values for VX and paraoxon for AChE from the electric eel were 3.5 × 107 and 1.7 × 105 M−1 min−1, respectively, conforming well to reported values obtained by bulk methods.  相似文献   

12.
Proteins are used as biocatalysts, therapeutic or diagnostic agents, and as such they are biotechnological products. Moreover, they are biomarkers for health states, diseases or toxic or other adverse effects, and the intracellular protein network is essential for the adaptation of an organism to its environment. Thus, there is a strong need for analytical methods for protein determination, which allow not only to indicate the presence of a protein, but also its concentration, covalent modification and activity, and corresponding developments of new methods experienced strong support. Among those methods only those were considered here, which are based on affinity reactions between an immobilized capture agent, such as an antibody or a receptor, and the target protein. Immobilization methods range from adsorption on hydrophobic materials, in membranes or gels to covalent binding and bioaffinity reactions, such as the oriented immobilization of antibodies on protein A/G layers. The applicability of the various methods is dependent on physical and chemical properties of the immobilization substrate and of the capture agent, i.e. the presence of surface charges, hydrophobic areas or functional groups for chemical coupling. The choice of the immobilization substrate is influenced by the combination of the assay and detection principle, which meets best the practical requirements. Assay formats range from direct, label-free one-step detection of the affinity reaction between the capture agent and the target protein to multi-step procedures, such as an enzyme-tracer-based sandwich assays. Each approach has its particular advantages and disadvantages with respect to the complexity of the assay, i.e. number of required reagents and of incubation steps, the possible degree of automation, assay time, availability of suitable reagents, required sample volume, sensitivity and specificity, including the possibility to determine several proteins simultaneously. No general recommendation for the "best choice" was given in this contribution, but examples were chosen, which illustrate the potential of the different systems.  相似文献   

13.
Grazing-exit x-ray fluorescence (GE-XRF) and micro x-ray fluorescence (micro-XRF) methods were applied to chemical microchips as a detection method. Since an energy-dispersive x-ray detector was used, the simultaneous detection of multiple elements was possible. An analyzing region was especially designed on the microchip so that a sample solution could be dried and concentrated in a suitable area corresponding to the size of the primary x-ray beam. Finally, it was confirmed that both analytical methods could be combined well for use with a microchip. In GE-XRF, the background intensity in the XRF spectrum was reduced at grazing-exit angles. In addition, a good relationship between the x-ray fluorescence intensities and the concentrations of standard solutions that were introduced into the microchip was obtained. This indicates that the GE-XRF method is feasible for trace elemental analysis in chemical microchip systems. In micro-XRF, an attempt was made to concentrate and dry the analyte within a small analyzing region. The preliminary results indicated that the micro-XRF method could be applied for the analysis of microchips.  相似文献   

14.
Recent developments in optical detection methods for microchip separations   总被引:4,自引:0,他引:4  
This paper summarizes the features and performances of optical detection systems currently applied in order to monitor separations on microchip devices. Fluorescence detection, which delivers very high sensitivity and selectivity, is still the most widely applied method of detection. Instruments utilizing laser-induced fluorescence (LIF) and lamp-based fluorescence along with recent applications of light-emitting diodes (LED) as excitation sources are also covered in this paper. Since chemiluminescence detection can be achieved using extremely simple devices which no longer require light sources and optical components for focusing and collimation, interesting approaches based on this technique are presented, too. Although UV/vis absorbance is a detection method that is commonly used in standard desktop electrophoresis and liquid chromatography instruments, it has not yet reached the same level of popularity for microchip applications. Current applications of UV/vis absorbance detection to microchip separations and innovative approaches that increase sensitivity are described. This article, which contains 85 references, focuses on developments and applications published within the last three years, points out exciting new approaches, and provides future perspectives on this field.  相似文献   

15.
16.
徐溢  徐平洲  曹强  卢倩  温志渝 《分析化学》2008,36(12):1636-1640
将合成的甲基丙烯酸丁酯(BMA)整体柱与微流控芯片技术结合,在PMMA芯片上以K3Fe(CN)6-NaOH-异烟肼化学发光体系为样品对象,在优化混合发光试剂比例和流速以及选择适合的洗脱液基础之上,实现了BMA整体微柱对异烟肼样品的富集作用,平均富集倍数和回收率分别达到16.8和84.2%,由此建立了流动注射化学发光(FIA-CL)芯片系统测定血液中痕量异烟肼的浓度的方法,可有效地实现异烟肼血药浓度分析的片上预处理和快速测定,检出限低于0.2 mg/L。  相似文献   

17.
Ohla S  Beyreiss R  Scriba GK  Fan Y  Belder D 《Electrophoresis》2010,31(19):3263-3267
A microchip-based assay to monitor the conversion of peptide substrates by human recombinant sirtuin 1 (hSIRT1) is presented. For this purpose a fused silica microchip consisting of a microfluidic separation structure with an integrated serpentine micromixer has been used. As substrate for the assay, we used a 9-fluorenylmethoxycarbonyl (Fmoc)-labeled tetrapeptide derived from the amino acid sequence of p53, a known substrate of hSIRT1. The Fmoc group at the N-terminus resulting from solid-phase peptide synthesis enabled deep UV laser-induced fluorescence detection with excitation at 266 nm. The enzymatic reaction of 0.1 U/μL hSIRT1 was carried out within the serpentine micromixer using a 400 μM solution of the peptide in buffer. In order to reduce protein adsorption, the reaction channel was dynamically coated with hydroxypropylmethyl cellulose. The substrate and the deacetylated product were separated by microchip electrophoresis on the same chip. The approach was successfully utilized to screen various SIRT inhibitors.  相似文献   

18.
Lanthanide chelates are excellent labels in ligand binding assays due to their long lifetime fluorescence, which enables efficient background reduction using time-resolved measurement. In separation-free homogeneous assays, however, some compounds in the sample may cause quenching of the lanthanide fluorescence and extra steps are required before these samples can be measured. In this study we have evaluated whether europium chelates packed inside a polystyrene nanoparticle are better protected from the environment than individual Eu(III)-chelates, and do these particles have higher tolerance against known interfering compounds (bivalent metal ions and variation of pH). We also tested whether metal ions had any effect on a fluorescence resonance energy transfer (FRET) based detection of a bioaffinity binding reaction. The presence of metal ions or variation of pH did not affect the fluorescence of the Eu(III)-chelate dyed nanoparticles, while significant decrease of the fluorescence was detected with a 9-dentate Eu(III)-chelate. Metal ions also decreased the fluorescence lifetime of the 9-dentate Eu(III)-chelate from 0.960 to 0.050 ms. Coloured metal ions caused a minor decrease in sensitised emission generated by FRET when Eu(III)-chelate dyed nanoparticles were used as donor labels. The decreased signal was due to the absorption of the sensitised emission by the coloured metal ions, since the metal ions had no effect on the lifetime of the sensitised emission. Thus the Eu(III)-chelate dyed nanoparticles are preferred labels in homogeneous bioaffinity assays, when interfering compounds are known to be present.  相似文献   

19.
A microchip capillary electrophoresis system with highly sensitive fluorescence detection is reported. The system was successfully constructed using an inverted fluorescence microscope, a highly sensitive photon counter, a photomultiplier tube (PMT) and a capillary electrophoresis microchip. This system can be applied to the fluorescence detection with various wavelengths (300-600 nm). Different fluorescence reagents require different excitation wavelengths. The wavelengths of UV light (300-385 nm), blue light (450-480 nm) and green light (530-550 nm) are employed to excite Titan yellow, fluorescence-5-isothiocyanate (FITC) and Rhodamine 6G, respectively. The detection limit (S/N = 3) of FITC is 7 × 10−10 M, which is 2-3 orders of magnitude lower than that obtained with the lamp-based fluorescence and PMT detection system and approaches the data gained by the laser-induced fluorescence detection. The linear relationship is excellent within the range of concentration 1.3 × 10−9 to 6.5 × 10−8 M FITC. It offers a new method to widen the application of the lamp-based fluorescence detection.  相似文献   

20.
A novel method for the detection of PDGF-BB has been developed using double-strand DNA-copper nanoparticles (dsDNA-CuNPs) as fluorescent markers. This assay relies on the premise that the aptamer- based probe undergoes a conformational change upon binding with target protein, and subsequently triggers polymerization reaction to generate dsDNA. Then, the resultant dsDNA can be used as a template for the formation of CuNPs with high fluorescence. Under the optimized conditions, the proposed assay allowed sensitive and selective detection of PDGF-BB with a detection limit of 4 nmol/L. This possibly makes it an attractive platform for the detection of a variety of biomolecules whose aptamers undergo similar conformational change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号