首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A well-defined, double-hydrophilic diblock copolymer comprising poly[2-(methacryloyloxy)ethyl phosphorylcholine]-block-(glycerol monomethacrylate) (PMPC30-PGMA30, where the numbers represent the average degrees of polymerization for each block) was evaluated for the synthesis of colloidally stable ultrafine magnetite sols. Sterically stabilized paramagnetic sols were prepared in aqueous solution by chemical coprecipitation of ferric and ferrous salts in the presence of this block copolymer. The PMPC30-PGMA30-stabilized magnetite sol had a mean transmission electron microscopy (TEM) diameter of 9.4 +/- 1.7 nm and a mean hydrodynamic diameter of 34 nm. This sol exhibited improved colloidal stability with respect to long-term storage and pH variation compared with magnetite sols prepared in the presence of alternative water-soluble homopolymers and diblock copolymers. Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry, electron spectroscopy imaging (ESI), and zeta potential studies indicate that the PMPC30-PGMA30 diblock copolymer was adsorbed onto the surface of the sol via the PGMA30 block, with the PMPC30 chains acting as the stabilizing block. Such sterically stabilized sols are expected to be improved contrast agents for magnetic resonance imaging (MRI) applications.  相似文献   

2.
HAuCl(4) in aqueous solution was extracted to toluene or chloroform using a hydrophobically modified poly(amidoamine) dendrimer. Then, by reduction of Au(3+) ions with dimethylamineborane, gold nanoparticles in the size range of 2-4 nm were obtained in toluene or chloroform. It is suggested that gold nanoparticles are encapsulated by the dendrimer. Copyright 2000 Academic Press.  相似文献   

3.
[Poly(2-(N,N-dimethylamino)ethyl methacrylate)]-b-poly(methyl methacrylate)-b-[poly(2-(N,N-dimethylamino)ethyl methacrylate)] (M(n)=45,000; 20K-5K-20K; PDI = 1.2) block copolymer surfactant stabilized amphiphilic gold-silver alloy nanoparticles (Au-Ag(PDMA-b-PMMA-b-PDMA)) has been synthesized in both water and in organic medium. The block copolymer stabilized pre-made alloy nanoparticles were successfully dispersed in hydrophobic poly(methyl methacrylate) homopolymer matrix (PMMA) of molecular weight 30,000. The successful synthesis of alloy nanoparticles was accessed by Transmission Electron Microscope (TEM), Energy Dispersed X-ray (EDX), and UV-visible spectrophotometric analysis. The surface functionality of the nanoparticles was confirmed by quantitative determining the grafting density of polymer chain around the nanoparticle surface using combination of thermo gravimetric (TGA) and TEM analysis. The hydrodynamic diameter of the alloy particles including the polymer chains was obtained from dynamic light scattering measurement (DLS). The mechanism of synthesis of high concentration of Au-Ag alloy particles from HAuCl(4) and AgNO(3) (in presence of Cl(-) from reduction of gold salt) metal particles precursors and the successful preparation of poly(methyl methacrylate)/gold-silver nanocomposite films have been discussed.  相似文献   

4.
This paper describes the syntheses of core/shell gold nanoparticles stabilized with a monolayer of double hydrophilic block copolymer and their stimuli responsiveness before and after shell cross-linking. The hybrid nanoparticles consist of gold core, cross-linkable poly(2-(dimethylamino)ethyl methacrylate) (PDMA) inner shell, and poly(ethylene oxide) (PEO) corona. First, diblock copolymer PEO-b-PDMA was prepared via the reversible addition-fragmentation chain transfer (RAFT) technique using a PEO-based macroRAFT agent. The dithioester end group of PEO-b-PDMA diblock copolymer was reduced to a thiol end group. The obtained PEO-b-PDMA-SH was then used to prepare diblock copolymer stabilized gold nanoparticles by the "grafting-to" approach. 1,2-Bis(2-iodoethoxy)ethane (BIEE) was utilized to selectively cross-link the PDMA residues in the inner shell. The stimuli responsiveness and colloidal stability of core/shell gold nanoparticles before and after shell cross-linking were characterized by laser light scattering (LLS), UV-vis transmittance, and transmission electron microscopy (TEM). At pH 9, the average hydrodynamic radius Rh of non-cross-linked hybrid gold nanoparticles starts to increase above 35 degrees C due to the lower critical solution temperature (LCST) phase behavior of the PDMA blocks in the inner shell. In contrast, Rh of the shell cross-linked gold nanoparticles were essentially independent of temperature. Core/shell gold nanoparticles before and after shell cross-linking exhibit reversible swelling on varying the solution pH. Compared to non-cross-linked core/shell gold nanoparticles, shell cross-linking of the hybrid gold nanoparticles leads to permanent core/shell nanostructures with much higher colloidal stability and physically isolates the gold core from the external environment.  相似文献   

5.
We report here on the effects that the solution properties of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers have on the reduction of hydrogen tetrachloroaurate(III) hydrate (HAuCl4.3H2O) and the size of gold nanoparticles produced. The amphiphilic block copolymer solution properties were modulated by varying the temperature and solvent quality (water, formamide, and their mixtures). We identified two main factors, (i) block copolymer conformation or structure (e.g., loops vs entanglements, nonassociated polymers vs micelles) and (ii) interactions between AuCl4- ions and block copolymers (attractive ion-dipole interactions vs repulsive interactions due to hydrophobicity), to be important for controlling the competition between the reactivities of AuCl4- reduction in the bulk solution to form gold seeds and on the surface of gold seeds (particles) and the particle size determination. The particle size increase observed with increased temperature in aqueous solutions is attributed to enhanced hydrophobicity of the block copolymer, which favors AuCl4- reduction on the surface of seeds. The lower reactivity and higher particle sizes observed in formamide solutions are attributed to the shielding of ion-dipole interaction between AuCl4- ions and block copolymers by formamide, which overcomes the beneficial effects of formamide on the block copolymer conformation (lower micelle concentration).  相似文献   

6.
Loading of HAuCl4 in poly(amido amine) G4 dendrimers having poly(ethylene glycol) (PEG) grafts at all chain ends and subsequent reduction with NaBH4 yielded PEG-modified dendrimers encapsulating gold nanoparticles (Au NPs) of ca. 2 nm diameter. The Au NPs held in the dendrimers were stable in aqueous solutions and dissolved readily, even after freeze-drying. Despite their small particle size, the heat-generating ability of Au NPs held in the dendrimer was comparable to that of widely used Au NPs with ca. 11 nm diameter under visible light irradiation. The observed excellent colloidal stability, high heat-generating ability and their biocompatible surface confirm that the PEG-modified dendrimers encapsulating Au NPs are a promising tool for photothermal therapy and imaging.  相似文献   

7.
The formation of high concentration gold nanoparticles at room temperature is reported in block copolymer-mediated synthesis where the nanoparticles have been synthesized from hydrogen tetrachloroaureate(III) hydrate (HAuCl(4)·3H(2)O) using block copolymer P85 (EO(26)PO(39)EO(26)) in aqueous solution. The formation of gold nanoparticles in these systems has been characterized using UV-visible spectroscopy and small-angle neutron scattering (SANS). We show that the presence of additional reductant (trisodium citrate) can enhance nanoparticle concentration by manyfold, which does not work in the absence of either of these (additional reductant and block copolymer). The stability of gold nanoparticles with increasing concentration has also been examined.  相似文献   

8.
PEGylated gold nanoparticles with biotin moieties installed at the distal end of the PEG tethered chains were prepared by the autoreduction of HAuCl4 catalyzed by alpha-biotinyl-PEG-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (biotinyl-PEG/PAMA) in aqueous medium at room temperature. The size of the gold nanoparticles was controllable in a range of 6-13 nm by changing the initial Au3+/polymer ratio, while retaining their narrow size distribution. The dispersion stability of the nanoparticles in aqueous medium was extremely high even under the condition of salt concentration as high as I = 2.0. Biotinyl-PEG/PAMA-anchored gold nanoparticles underwent specific aggregation in the presence of streptavidin, revealing their promising utility as colloidal sensing systems applicable under biological condition.  相似文献   

9.
A single-step synthesis of gold nanoparticles with an average diameter of approximately 10 nm from hydrogen tetrachloroaureate(III) hydrate (HAuCl4.3H2O) has been achieved in air-saturated aqueous solutions that contain poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers but not any other reducing agent. These amphiphilic block copolymers act as both reductants and colloidal stabilizers and prove very efficient in both functions. The formation of gold nanoparticles is controlled by the overall molecular weight and relative block length of the block copolymer. The synthesis procedure reported here is environmentally benign and economic, as it involves the minimum possible number of components: it uses water as the solvent, it uses commercially available polymers, it proceeds fast to completion, and it results in a "ready-to-use" product.  相似文献   

10.
Micellization of a poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO45-b-P4VP28) copolymer in water during metalation (incorporation of gold compounds and gold nanoparticle formation) with three types of gold compounds, NaAuCl4, HAuCl4, and AuCl3, was studied using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The transformations of the PEO45-b-P4VP28 block copolymer micelles in water were found to depend on a number of parameters including the thermal history of the as-prepared block copolymer, the type of the metal compound, and the metal loading. For the HAuCl4-filled PE045-b-P4VP28 micelles, the subsequent reduction with hydrazine hydrate results in a significant fraction of rodlike micelles, suggesting that slow nucleation (confirmed by the formation of the large gold nanoparticles) and facilitated migration of gold ions yields the ideal conditions for sphere-to-rod micellar transition.  相似文献   

11.
Micelle-supported gold composites with a polystyrene core and a poly(4-vinyl pyridine)/Au shell are synthesized using NaBH(4) to reduce a mixture of micelle and HAuCl(4) in acidic aqueous solution (pH approximately 2). The template micelle with a polystyrene core and a poly(4-vinyl pyridine) shell is formed by self-assembly of block copolymer polystyrene-block-poly(4-vinyl pyridine). The gold nanoparticles coated onto the surfaces of the composites possess an average diameter of about 15 nm. The composites are applied to catalyze the reduction of p-nitrophenol in the presence of NaBH(4), and the results indicate that the kinetic constant of the reaction increases when the composite concentration and the reaction temperature increase. In addition, research results also indicate that composites with high content of gold show higher catalytic activity and higher catalytic efficiency.  相似文献   

12.
Highly biocompatible pH-sensitive diblock copolymer vesicles were prepared from the self-assembly of a biocompatible zwitterionic copolymer, poly[2-(methacryloyloxy)ethyl phosphorylcholine-block-2-(diisopropylamino)ethyl methacrylate], PMPC-b-PDPA. Vesicle formation occurred spontaneously by adjusting the solution pH from pH 2 to above 6, with the hydrophobic PDPA chains forming the vesicle walls. Transmission electron microscopy (TEM), dynamic laser light scattering (DLS), and UV-visible absorption spectrophotometry were used to characterize these vesicles. Gold nanoparticle-decorated vesicles were also obtained by treating the vesicles with HAuCl4, followed by NaBH4.  相似文献   

13.
Ligands with a beta-diketone skeleton have been employed for the first time as reductant to produce ligand stabilized gold nanoparticles of different shapes from aqueous HAuCl(4) solution. Evolution of stable gold nanoparticles follows first order (k approximately equal to 10(-2) min(-1)) kinetics with respect to Au(0) concentration. Growth of particles of different shapes (spherical or triangular or hexagonal) goes hand in hand under the influence of different beta-diketones, which have excellent capping and reducing properties. Chlorine insertion was observed to take place in the beta-diketone skeleton.  相似文献   

14.
Biodegradable and amphiphilic triblock copolymers poly(ethyl ethylene phosphate)-poly(3-hydroxy-butyrate)-poly(ethyl ethylene phosphate) (PEEP-b-PHB-b-PEEP) have been successfully synthesized through ring-opening polymerization. The structures are confirmed by gel permeation chromatography and NMR analyses. Crystallization investigated by X-ray diffraction reveals that the block copolymer with higher content of poly(ethyl ethylene phosphate) (PEEP) is more amorphous, showing decreased crystallizability. The obtained copolymers self-assemble into biodegradable nanoparticles with a core-shell micellar structure in aqueous solution, verified by the probe-based fluorescence measurements and transmission electronic microscopy (TEM) observation. The hydrophobic poly(3-hydroxybutyrate) (PHB) block serves as the core of the micelles and the micelles are stabilized by the hydrophilic PEEP block. The size and size distribution are related to the compositions of the copolymers. Paclitaxel (PTX) has been encapsulated into the micelles as a model drug and a sustained drug release from the micelles is observed. MTT assay also demonstrates that the block copolymers are biocompatible, rendering these copolymers attractive for drug delivery. Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060358036)  相似文献   

15.
Reversible addition-fragmentation chain transfer polymerization has been utilized to polymerize 2-hydroxypropyl methacrylate (HPMA) using a water-soluble macromolecular chain transfer agent based on poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC). A detailed phase diagram has been elucidated for this aqueous dispersion polymerization formulation that reliably predicts the precise block compositions associated with well-defined particle morphologies (i.e., pure phases). Unlike the ad hoc approaches described in the literature, this strategy enables the facile, efficient, and reproducible preparation of diblock copolymer spheres, worms, or vesicles directly in concentrated aqueous solution. Chain extension of the highly hydrated zwitterionic PMPC block with HPMA in water at 70 °C produces a hydrophobic poly(2-hydroxypropyl methacrylate) (PHPMA) block, which drives in situ self-assembly to form well-defined diblock copolymer spheres, worms, or vesicles. The final particle morphology obtained at full monomer conversion is dictated by (i) the target degree of polymerization of the PHPMA block and (ii) the total solids concentration at which the HPMA polymerization is conducted. Moreover, if the targeted diblock copolymer composition corresponds to vesicle phase space at full monomer conversion, the in situ particle morphology evolves from spheres to worms to vesicles during the in situ polymerization of HPMA. In the case of PMPC(25)-PHPMA(400) particles, this systematic approach allows the direct, reproducible, and highly efficient preparation of either block copolymer vesicles at up to 25% solids or well-defined worms at 16-25% solids in aqueous solution.  相似文献   

16.
There has been a keen interest for developing a biologically friendly approach for the preparation of gold nanoparticles for their application reasons. A biocompatible, quick and single step method is established for the preparation of gold nanoparticles in lecithin (Egg phosphatidylcholine)/water systems where lecithin itself acts as a reductant for hydrogen tetrachloro aurate (HAuCl(4)) to form the gold nanoparticles. Small gold nanoparticles (5-7 nm in diameter) were prepared in lamellar phases formed by lecithin within 6-7h of HAuCl(4) addition. Sonication of aqueous mixture of lecithin/HAuCl(4) reduces the time of reduction process to seconds when a sonicator with probe (100 W) is used. Most of the particles are found attached to lecithin structures and are comparatively large in size. Some 10nm particles are found attached to small lecithin vesicles (~100 nm) formed during sonication. The nanoparticles formed were stabilized by an anionic surfactant sodium dodecylsulfate (SDS) which proved to be a good stabilizer, the nanoparticles being stable up to six months. To the best of our knowledge, this is the first report where a biological surfactant lecithin itself has acted as a reductant and no other chemical reductants were required for the gold nanoparticle formation. Particles were characterized by Uv-vis spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS). Lamellar phases were characterized by a polarizing microscope.  相似文献   

17.
Gold nanoparticles (1-10 nm size range) were prepared with an appreciably narrow size distribution by in situ reduction of HAuCl(4) in the presence of heterobifunctional poly(ethylene glycol) (PEG) derivatives containing both mercapto and acetal groups (alpha-acetal-omega-mercapto-PEG). The alpha-acetal-PEG layers formed on gold nanoparticles impart appreciable stability to the nanoparticles in aqueous solutions with elevated ionic strength and also in serum-containing medium. The PEG acetal terminal group was converted to aldehyde by gentle acid treatment, followed by the reaction with p-aminophenyl-beta-D- lactopyranoside (Lac) in the presence of (CH(3))(2)NHBH(3). Lac-conjugated gold nanoparticles exhibited selective aggregation when exposed to Recinus communis agglutinin (RCA(120)), a bivalent lectin specifically recognizing the beta-D-galactose residue, inducing significant changes in the absorption spectrum with concomitant visible color change from pinkish-red to purple. Aggregation of the Lac-functionalized gold nanoparticles by the RCA(120) lectin was reversible, recovering the original dispersed phase and color by addition of excess galactose. Further, the degree of aggregation was proportional to lectin concentration, allowing the system to be utilized to quantitate lectin concentration with nearly the same sensitivity as ELISA. This simple, yet highly effective, derivatization of gold nanoparticles with heterobifunctional PEG provides a convenient method to construct various colloidal sensor systems currently applied in bioassays and biorecognition.  相似文献   

18.
The desorption and subsequent pH-responsive behavior of selectively quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate) (PDMA-PDEA) films at the silica/aqueous solution interface has been characterized. The copolymer films were prepared at pH 9, where micelle-like surface aggregates are spontaneously formed on silica. The subsequent rinse with a copolymer-free electrolyte solution adjusted to pH 9 causes partial desorption of the weakly or non-quaternized copolymers, but negligible desorption for the highly quaternized copolymers. Further rinsing with a pH 4 electrolyte solution results in additional desorption and extension (swelling) of the remaining adsorbed copolymer film normal to the interface. This pH-responsive behavior is reversible for two pH cycles (9-4-9-4) as monitored by both quartz crystal microbalance with dissipation monitoring (QCM-D) and also zeta potential measurements. The magnitude of the pH-responsive behavior depends on the mean degree of quaternization of the PDMA block. Moreover, a combination of contact angle data, zeta potential measurements and in situ atomic force microscopy (AFM) studies indicates that the pH-responsive behavior is influenced not only by the number of cationic binding sites on the adsorbed copolymer chains but also by the adsorbed layer structure.  相似文献   

19.
A study is presented of the preparation of gold nanoparticles incorporated into biodegradable micelles. Poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) copolymer was synthesized by ring-opening polymerization, and the hydroxyl end group of the PCL block was modified with thioctic acid using dicyclohexyl carbodiimide as the coupling reagent. The PEO-b-PCL-thioctate ester (TE) thus obtained was used in a later step to form monolayer protected gold nanoparticles via the thioctate spacer. Gold nanoparticles stabilized with the PEO-b-PCL block (named Au/Block (x/y), where x/y is the mole feed ratio between HAuCl4 and PEO-b-PCL-TE) were prepared and analyzed. Au/Block (1/1), Au/Block (2/1), and Au/Block (3/1) nanoparticles were found to form stable dispersions in the organic solvents commonly used to dissolve the unlabeled block copolymer. The average diameter of the nanoparticles was determined by transmission electron microscopy (TEM) and found to be 6+/-2 nm. Au/Block (4/1) nanoparticle dispersions in organic solvents, on the other hand, were not stable and produced large gold clusters (50-100 nm). Cluster formation was attributed to the low grafting density of the block copolymer, which facilitates agglomeration. For Au/Block (12/1), along the same trend, only an insoluble product was isolated. Micelles in water were prepared by the slow addition of the dilute Au/Block solution in dimethylformamide into a large excess of water with vigorous stirring. Au/Block (1/1) and Au/Block (2/1) formed nanosized structures of 5-7 nm. TEM images of stained Au/Block (1/1) micelles, made in water, clearly showed the formation of core-shell structures. Au/Block (3/1) micelles, on the other hand, were not stable and large agglomerates a few microns in size were observed. The study focuses on the synthesis, characterization, and aggregation behavior of gold-loaded PEO-b-PCL block copolymer micelles, a potential system for drug delivery in conjunction with tissue and subcellular localization studies.  相似文献   

20.
The pH-responsive behavior of adsorbed diblock copolymer films of PDMA-PDEA (poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate)) on silica has been characterized using a quartz crystal microbalance with dissipation monitoring (QCM-D), an optical reflectometer (OR) and an atomic force microscope (AFM). The copolymer was adsorbed at pH 9 from various copolymer concentrations; QCM-D measurements indicate that the level of desorption when rinsed at pH 9 depends on the initial copolymer concentration. The adsorbed films produced at pH 9 generally have low charge densities; adjusting the solution pH to 4 results in a significant protonation of the constituent copolymers and a related interfacial structural change for the copolymer film. OR studies show no significant change during pH cycling, while QCM-D measurements indicate that the adsorbed mass and dissipation alter dramatically in response to the solution pH. The difference between the QCM-D adsorbed masses and dissipation values at pH 4 and 9 were found to be dependent on the initial copolymer concentration. This is due to differences in the initial conformations within the adsorbed copolymer layers at pH 9. The effect of the PDMA chain length on the pH-responsive behavior has also been studied; both the QCM-D adsorbed mass and dissipation of PDMA54-PDEA24 (shorter PDMA block) at pH 4 and 9 were observed to be greater than those of PDMA9X-PDEA2Y (longer PDMA block). This suggests that the normal extension of the adsorbed PDMA54-PDEA24 copolymer films is more significant than that of the PDMA9X-PDEA2Y films on silica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号