首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Non-linear resonant ultrasound spectroscopy (NRUS) is a technique exploiting the significant non-linear behavior of damaged materials, related to the presence of damage. This study shows for the first time the feasibility of this technique for damage assessment in bone. Two samples of bovine cortical bone were subjected to a progressive damage experiment. Damage accumulation was progressively induced in the samples by mechanical testing. For independent assessment of damage, X-ray CT imaging was performed at each damage step, but only helped in the detection of the prominent cracks. Synchrotron micro-CT imaging and histology using epifluorescence microscopy were performed in one of the two samples at the last damage step and allowed detection of micro-cracks for this step. As the quantity of damage accumulation increased, NRUS revealed a corresponding increase in the non-linear response. The measured change in non-linear response is much more sensitive than the change in elastic modulus. The results suggest that NRUS could be a potential tool for micro-damage assessment in bone. Further work has to be carried out for a better understanding of the physical nature of damaged bone, and for the ultimate goal of in vivo implementation of the technique where bone access will be a challenging problem.  相似文献   

2.
Nonlinear resonant ultrasound spectroscopy (NRUS) consists of evaluating one or more resonant frequency peak shifts while increasing excitation amplitude. NRUS exhibits high sensitivity to global damage in a large group of materials. Most studies conducted to date are aimed at interrogating the mechanical damage influence on the nonlinear response, applying bending, or longitudinal modes. The sensitivity of NRUS using longitudinal modes and the comparison of the results with a classical linear method to monitor progressive thermal damage (isotropic) of concrete are studied in this paper. In addition, feasibility and sensitivity of applying shear modes for the NRUS method are explored.  相似文献   

3.
The aim is to assess the nonclassical component of material nonlinearity in several classes of materials with weak, intermediate, and high nonlinear properties. In this contribution, an optimized nonlinear resonant ultrasound spectroscopy (NRUS) measuring and data processing protocol applied to small samples is described. The protocol is used to overcome the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic nonlinearity. External temperature fluctuation is identified as a primary source of measurement contamination. For instance, a variation of 0.1?°C produced a frequency variation of 0.01%, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to overcome environmental effects, the reference frequency measurements are repeated before each excitation level and then used to compute nonlinear parameters. Using this approach, relative resonant frequency shifts of 10(-5) can be measured, which is below the limit of 10(-4) often considered as the limit of NRUS sensitivity under common experimental conditions. Due to enhanced sensitivity resulting from the correction procedure applied in this work, nonclassical nonlinearity in materials that before have been assumed to only be classically nonlinear in past work (steel, brass, and aluminum) is reported.  相似文献   

4.
Large amplitude vibrations and damage detection of rectangular plates   总被引:1,自引:0,他引:1  
In this work, geometrically nonlinear vibrations of fully clamped rectangular plates are used to study the sensitivity of some nonlinear vibration response parameters to the presence of damage. The geometrically nonlinear version of the Mindlin plate theory is used to model the plate behaviour. Damage is represented as a stiffness reduction in a small area of the plate. The plate is subjected to harmonic loading with a frequency of excitation close to the first natural frequency leading to large amplitude vibrations. The plate vibration response is obtained by a pseudo-load mode superposition method. The main results are focussed on establishing the influence of damage on the vibration response of the plate and the change in the time-history diagrams and the Poincaré maps caused by the damage. Finally, a criterion and a damage index for detecting the presence and the location of the damage is proposed. The criterion is based on analysing the points in the Poincaré sections of the damaged and healthy plate. Numerical results for large amplitude vibrations of damaged and healthy rectangular and square plates are presented and the proposed damage index for the considered cases is calculated. The criterion demonstrates quite good abilities to detect and localize damage.  相似文献   

5.
This paper presents a nonlinear imaging method for the detection of the nonlinear signature due to impact damage in complex anisotropic solids with diffuse field conditions. The proposed technique, based on a combination of an inverse filtering approach with phase symmetry analysis and frequency modulated excitation signals, is applied to a number of waveforms containing the nonlinear impulse responses of the medium. Phase symmetry analysis was used to characterize the third order nonlinearity of the structure by exploiting its invariant properties with the phase angle of the input waveforms. Then, a "virtual" reciprocal time reversal imaging process, using only one broadcasting transducer and one receiving transducer, was used to insonify the defect taking advantage of multiple linear scattering as mode conversion and boundary reflections. The robustness of this technique was experimentally demonstrated on a damaged sandwich panel, and the nonlinear source, induced by low-velocity impact loading, was retrieved with a high level of accuracy. Its minimal processing requirements make this method a valid alternative to the traditional nonlinear elastic wave spectroscopy techniques for materials showing either classical or non-classical nonlinear behavior.  相似文献   

6.
Sustained resonance in a linear oscillator is achievable with a drive whose constant frequency matches the resonant frequency of the oscillator. But in oscillators with nonlinear restoring forces such as the pendulum, Duffing and Duffing-Van der Pol oscillator, the resonant frequency changes as the amplitude changes, so a constant frequency drive results in a beat oscillation instead of sustained resonance. Duffing-type nonlinear oscillators can be driven into sustained resonance, called autoresonance, when the drive frequency is swept in time to match the changing resonant frequency of the oscillator. We find that near-optimal drive linear sweep rates for autoresonance can be estimated from the beat oscillation resulting from constant frequency excitation. Specifically, a least squares estimate of the Teager-Kaiser instantaneous frequency versus time for the beat response to a stationary drive provides a near-optimal estimate of the nonstationary drive linear sweep rate needed to sustain resonance in the pendulum, Duffing and Duffing-Van der Pol oscillators. We confirm these predictions with model-based numerical simulations. An advantage of the beat method of estimating optimal drive sweep rates for maximal autoresonant response is that no model is required so experimentally generated beat oscillation data can be used for systems where no model is available.  相似文献   

7.
This work aims to establish a vibration-based damage identification method for fiber-reinforced laminated composites and their sandwich construction. This new on-line structural damage identification technique uses the structural dynamic system reconstruction method exploiting the frequency response functions (FRFs) of a damaged structure. To verify the effectiveness of this damage identification method, the frequency responses obtained by vibration testing of fatigue-damaged laminated composites and honeycomb sandwich beams with debonding are examined according to the extent of the damage via the fatigue-damage load cycle for laminated composites, and via the debonding extent for honeycomb sandwich beams. The changes of the peaks and valley of the FRFs according to the debonding extent and the fatigue load cycles are examined, and the area changes in the FRFs are also discussed as the damage index. The residual FRFs or the difference between intact and damaged FRFs are newly defined for application of the on-line damage identification method. Finally, the delamination extent for the sandwich beams and the fatigue damage level for the laminated composites can be easily identified in terms of the changes in natural frequencies and damping ratios of the reconstructed FRFs for these damaged composite structures.  相似文献   

8.
给出了一种基于混频效应的非线性超声微裂纹检测方法。首先,对结构损伤混频检测机理及信号特征提取方法进行了理论分析,之后,根据试件中差频分量及和频分量幅值分布随激励信号频率变化关系,优化确定出混频检测参数。最后,进行了异侧混频激励下无损检测试验研究,并分析了激励信号频率变化对混频检测效果的影响。结果表明,异侧激励混频检测模式不仅可以实现结构中疲劳微裂纹检测,而且可以实现缺陷的定位。且检测信号频率选择对混频检测信噪比有一定的影响。当检测信号中的混频分量幅值最大时,混频检测效果最佳。因此,在优化检测参数基础上,异侧混频激励检测模式可以很好实现结构微裂纹的检测与定位。   相似文献   

9.
The theory of spatiotemporal dynamics of gamma radiation in a resonant medium upon excitation of two-frequency gamma magnetic resonance in magnetic materials is considered. The radiation absorption at the fundamental frequency and the harmonic generation are investigated under conditions when the frequency of gamma radiation is shifted by the half-sum or half-difference of the frequencies of radio-frequency magnetic fields. It is shown that the propagation of gamma radiation through an absorber is characterized by a steady-state gamma intensity (resonant transparency). A consistent radio-frequency spectral analysis demonstrates that the intensities of harmonics drastically change at the transparency region boundaries due to nonlinear interference. The theory of quantum and dynamical beats of synchrotron radiation under conditions of induced resonant transparency is proposed.  相似文献   

10.
An overview on photon echo spectroscopy under resonant excitation of the exciton complexes in semiconductor nanostructures is presented. The use of four-wave-mixing technique with the pulsed excitation and heterodyne detection allowed us to measure the coherent response of the system with the picosecond time resolution. It is shown that, for resonant selective pulsed excitation of the localized exciton complexes, the coherent signal is represented by the photon echoes due to the inhomogeneous broadening of the optical transitions. In case of resonant excitation of the trions or donor-bound excitons, the Zeeman splitting of the resident electron ground state levels under the applied transverse magnetic field results in quantum beats of photon echo amplitude at the Larmor precession frequency. Application of magnetic field makes it possible to transfer coherently the optical excitation into the spin ensemble of the resident electrons and to observe a long-lived photon echo signal. The described technique can be used as a high-resolution spectroscopy of the energy splittings in the ground state of the system. Next, we consider the Rabi oscillations and their damping under excitation with intensive optical pulses for the excitons complexes with a different degree of localization. It is shown that damping of the echo signal with increase of the excitation pulse intensity is strongly manifested for excitons, while on trions and donor-bound excitons this effect is substantially weaker.  相似文献   

11.
12.
杨志安  卞雅媛 《计算物理》2017,34(3):374-378
研究柴油机轴系扭振系统强非线性问题.根据拉格朗日方程建立柴油机轴系扭振系统的动力学模型,通过参数变换,应用Modified Lindstedt-Poincaré方法得到柴油机轴系扭振系统强非线性主共振的幅频响应方程,分析系统不同参数对主共振幅频响应的影响.结果表明,系统的幅频响应曲线存在跳跃,随着简谐力矩的减小和阻尼的增大,系统的非线性跳跃减弱,系统的振幅减小,系统主共振的区域也随之减小;随着调谐参数的变化,系统的主共振力幅响应曲线存在两种拓扑结构.MLP方法得出的近似解析解与龙格库塔法得出的数值解吻合.  相似文献   

13.
An important issue in resonant vibration energy harvesters is that the best performance of the device is limited to a very narrow bandwidth around the fundamental resonance frequency. If the excitation frequency deviates slightly from the resonance condition, the power out is drastically reduced. In order to overcome this issue of the conventional resonant cantilever configuration, a non-resonant piezomagnetoelastic energy harvester has been introduced by the authors. This paper presents theoretical and experimental investigations of high-energy orbits in the piezomagnetoelastic energy harvester over a range of excitation frequencies. Lumped-parameter nonlinear equations (electromechanical form of the bistable Duffing oscillator with piezoelectric coupling) can successfully describe the large-amplitude broadband voltage response of the piezomagnetoelastic configuration. Following the comparison of the electromechanical trajectories obtained from the theory, it is experimentally verified that the piezomagnetoelastic configuration can generate an order of magnitude larger power compared to the commonly employed piezoelastic counterpart at several frequencies. Chaotic response of the piezomagnetoelastic configuration is also compared against the periodic response of the piezoelastic configuration theoretically and experimentally. Overcoming the bias caused by the gravity in vertical excitation of the piezomagnetoelastic energy harvester is discussed and utilization of high-energy orbits in the bistable structural configuration for electrostatic, electromagnetic and magnetostrictive transduction mechanisms is summarized.  相似文献   

14.
苏敏邦  戎海武 《中国物理 B》2011,20(6):60501-060501
The resonant response of a single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to a narrow-band random parametric excitation is investigated. The narrow-band random excitation used here is a bounded random noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, thereby permitting the applications of random averaging over "fast" variables. The averaged equations are solved exactly and an algebraic equation of the amplitude of the response is obtained for the case without random disorder. The methods of linearization and moment are used to obtain the formula of the mean-square amplitude approximately for the case with random disorder. The effects of damping, detuning, restitution factor, nonlinear intensity, frequency and magnitude of random excitations are analysed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak response amplitudes will reduce at large damping or large nonlinear intensity and will increase with large amplitude or frequency of the random excitations. The phenomenon of stochastic jump is observed, that is, the steady-state response of the system will jump from a trivial solution to a large non-trivial one when the amplitude of the random excitation exceeds some threshold value, or will jump from a large non-trivial solution to a trivial one when the intensity of the random disorder of the random excitation exceeds some threshold value.  相似文献   

15.
The dynamic analogue of the von Karman equations is used to study the forced response, including asymmetric vibrations and traveling waves, of a clamped circular plate subjected to harmonic excitations when the frequency of excitation is near one of the natural frequencies. The method of multiple scales, a perturbation technique, is used to solve the non-linear governing equations. The approach presented provides a great deal of insight into the nature of the non-linear forced resonant response. It is shown that in the absence of internal resonance (i.e., a combination of commensurable natural frequencies) or when the frequency of excitation is near one of the lower frequencies involved in the internal resonance, the steady state response can only have the form of a standing wave. However, when the frequency of excitation is near the highest frequency involved in the internal resonance it is possible for a traveling wave component of the highest mode to appear in the steady state response.  相似文献   

16.
Peculiarities of the nonlinear absorption of a colloidal solution of CdSe/ZnS quantum dots with various sizes under resonant stationary excitation of the ground electron–hole (exciton) transition have been revealed by the pump and probe technique. The detected peculiarities of the nonlinear change in absorption are explained by the coexistence and competition of the effects of state filling and charge-induced Stark and temperature long-wavelength shift of the absorption spectra.  相似文献   

17.
T Epstein  J Fineberg 《Pramana》2005,64(6):903-913
The nonlinear interactions of parametrically excited surface waves have been shown to yield a rich family of nonlinear states. When the system is driven by two commensurate frequencies, a variety of interesting superlattice type states are generated via a number of different 3-wave resonant interactions. These states occur either as symmetry-breaking bifurcations of hexagonal patterns composed of a single unstable mode or via nonlinear interactions between the two different unstable modes generated by the two forcing frequencies. Near the system’s bicritical point, a well-defined region of phase space exists in which a highly disordered state, both in space and time, is observed. We first show that this state results from the competition between two distinct nonlinear super-lattice states, each with different characteristic temporal and spatial symmetries. After characterizing the type of spatio-temporal disorder that is embodied in this disordered state, we will demonstrate that it can be controlled. Control to either of its neighboring nonlinear states is achieved by the application of a small-amplitude excitation at a third frequency, where the spatial symmetry of the selected pattern is determined by the temporal symmetry of the third frequency used. This technique can also excite rapid switching between different nonlinear states.  相似文献   

18.
胡航溢  许龙  郑伟成  罗凯 《应用声学》2024,43(1):198-203
超声波雾化技术由于其良好的雾化效果获得了广泛关注,具有极大的研究价值和应用前景。但是在超声雾化的过程中,由于换能器的温度变化、刚度变化以及在水中的负载变化等因素,会产生谐振频率漂移的现象。当工作频率偏移谐振频率时,将造成换能器的工作效率降低和元器件损坏等问题。针对此问题,设计了基于改进粒子群算法优化PID参数的超声雾化电源频率跟踪算法,并对该算法进行频率跟踪的仿真验证和实验对比,在频率跟踪上实现了更好的效果,使换能器能够稳定工作在谐振状态,提高了电源的利用率。  相似文献   

19.
This paper introduces a novel methodology for structural vibration analysis and vibration-based monitoring which utilises a special type of Principal Components Analysis (PCA), known as Singular Spectrum Analysis (SSA). In this study the methodology is introduced and demonstrated for the purposes of damage assessment in structures using their free decay response. The method?s damage assessment properties are first demonstrated on a numerical example for a two degree-of-freedom (2DoF) spring–mass and damper system with nonlinear stiffness. The method is then applied to an experimental case study of a composite laminate beam. The method is based on the decomposition of the frequency domain structural variation response using new variables, the Principal Components (PCs). Only a certain number of new variables are used to approximate the original vibration signal with very good accuracy. The presented results demonstrate the potential of the method for vibration based signal reconstruction and damage diagnosis. The healthy and the different damaged scenarios are clearly distinguishable in the new space of only two reconstructed components where a strong clustering effect is observed.  相似文献   

20.
The study of nonlinear frequency mixing for acoustic standing waves in a resonator cavity is presented. Two high frequencies are mixed in a highly nonlinear bubbly liquid filled cavity that is resonant at the difference frequency. The analysis is carried out through numerical experiments, and both linear and nonlinear regimes are compared. The results show highly efficient generation of the difference frequency at high excitation amplitude. The large acoustic nonlinearity of the bubbly liquid that is responsible for the strong difference-frequency resonance also induces significant enhancement of the parametric frequency mixing effect to generate second harmonic of the difference frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号