首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米通道滑移流动的分子动力学模拟研究   总被引:2,自引:0,他引:2  
本文采用非平衡分子动力学方法对平板纳米通道滑移流动进行了非平衡分子动力学模拟,获得了不同壁面势能和不同温度时流体的速度分布及密度分布。研究结果表明滑移速度在很大程度上决定于流体温度和壁面吸引力作用强度的大小。由于不同壁面吸引力时流体的密度分布受温度的影响规律不同,使得不同壁面吸引力时流体的滑移速度受温度影响规律也不一致。而且,流体结构受壁面流速的影响要受到壁面势能的制约。  相似文献   

2.
The two-dimensional Ising films with bulk H and surface H1 fields of opposite sign are studied above and close to bulk criticality by the density matrix renormalization group method. This technique, applied recently to d=2 Ising films, allows for very accurate results for the adsorption as a function of the reduced deviation from the critical temperature .For strong H1 three distinct classes of shapes of ,determined by the value of the parameter ,where L is the width of the film, are found in agreement with earlier predictions [A. Macioek, A. Ciach, R. Evans, J. Chem. Phys. 108, 9765 (1998)]. For strong and for weak bulk fields is a monotonic function, increasing for strong H and decreasing for weak H, in agreement with scaling analysis and earlier mean-field results. For H between these extreme cases assumes a maximum for and for a depletion occurs, as in recent experiments for critical adsorption in porous materials. For a limited range of H a qualitatively new behavior of is found. In addition to a maximum, a minimum of for appears, which in the mean-field analysis was absent. Received: 11 February 1998 / Received in final form: 16 February 1998 / Accepted: 17 March 1998  相似文献   

3.
A study is reported of adsorption of an associating Lennard-Jones fluid with four associative sites per molecule in a slit-like pore. The density distribution of particles in the pore and thermodynamics properties are evaluated by using a density functional method. It is found that at low temperatures the fluid exhibits a set of layering transitions, followed by capillary condensation. Transitions are localized by analysing the grand canonical potential. The density profiles of particles and the distribution of unbound and differently bonded particles demonstrate changes in the structure of the fluid in the pore along the phase coexistence. The critical temperature is lower for a confined fluid, compared with the bulk counterpart. However, an increase in the energy of association increases the critical temperature. The envelope of the capillary condensation is narrower than the bulk liquid-vapour phase diagram. The dependence of the solvation force on the energy of association and on the bulk density is discussed.  相似文献   

4.
The NMR 19F spin-lattice relaxation time constant T1 for CF4 gas is dominated by spin-rotation interaction, which is mediated by the molecular collision frequency. When confined to pores of approximately the same size or smaller than the bulk gas mean free path, additional collisions of molecules with the pore walls should substantially change T1. To develop a method for measuring the surface/volume ratio S/V by measuring how T1 changes with confinement, we prepared samples of known S/V from fumed silica of known mass-specific surface area and compressed to varying degrees into cylinders of known volume. We then measured T1 for CF4 in these samples at varying pressures, and developed mathematical models for the change in T1 to fit the data. Even though CF4 has a critical temperature below room temperature, we found that its density in pores was greater than that of the bulk gas and that it was necessary to take this absorption into account. We modeled adsorption in two ways, by assuming that the gas condenses on the pore walls, and by assuming that gas in a region near the wall is denser than the bulk gas because of a simplified attractive potential. Both models suggested the same two-parameter formula, to which we added a third parameter to successfully fit the data and thus achieved a rapid, precise way to measure S/V from the increase in T1 due to confinement in pores.  相似文献   

5.
In this article, we apply classical density functional theory to investigate the characteristics of depletion interaction in Lennard-Jones (LJ) binary fluid mixtures. First, to confirm the validity of our adopted density functional formalism, we calculate the radial distribution functions using a theoretical approach and compare them with results obtained by molecular dynamics simulation. Then, this approach is applied to two colloids immersed in LJ solvent systems. We investigate the variation of depletion interaction with respect to the distance of two colloids in LJ binary systems. We find that depletion interaction may be attractive or repulsive, mostly depending on the bulk density of the solvent and the temperature of the binary system. For high bulk densities, the repulsive barrier of depletion force is remarkable when the total excluded volume of colloids touches each other and reaches a maximum. The height of the repulsive barrier is related to the parameters of the LJ potential and bulk density. Moreover, the depletion force may exhibit attractive wells if the bulk density of the solvent is low. The attractive well tends to appear when the surface–surface distance of colloids is half of the size of the polymer and deepens with temperature lowering in a fixed bulk density. In contrast with the hard-sphere system, no oscillation of depletion potential around zero is observed.  相似文献   

6.
The adsorption of a hard sphere fluid in a slit-like pore filled with a disordered hard sphere matrix is studied using the inhomogeneous Ornstein-Zernike equation with hypernetted chain closure. In contrast to previous studies, an attractive wall-hard sphere interaction is considered. The adsorption is affected by the attractive interaction both directly by the fluid-wall interaction and indirectly by the change in the structure of the matrix. Density profiles and pair distribution functions are reported. For comparison, grand canonical Monte Carlo simulation data are obtained. The agreement of the theoretical and simulation results is satisfactory but somewhat less pleasing than for the purely repulsive case.  相似文献   

7.
We present results on investigations of the dynamics of the glass forming ortho-terphenyl (oTP) confined in nanoporous silica. Calorimetry experiments showed that the glass transition temperature of the confined liquid, Tgconf, has a non-trivial pore size dependence and is strongly affected by surface interactions. Fluid-wall interactions introduce gradients of structural relaxation times in the pores. The molecules at the surface of the pores are slowed down compared to those at the center of the pores. We focus here on a pore diameter range (7 σ< d < 12 σ, where σ is the molecular diameter), where a large variety of dynamical behavior were observed. Depending on surface properties of the confined media, T gconf may be smaller or larger than the bulk one. In a quite attractive matrix with a pore size of around 7 nm, the structural relaxation times gradient is important enough to allow the observation of two glass transitions for the same liquid. Effects of fluid wall interactions on the short time dynamics at high temperature were also investigated by quasielastic neutron scattering. The self and collective motions exhibit well above the bulk melting point the same dependence on fluid-wall interactions as at Tg.  相似文献   

8.
9.
Grand canonical Monte Carlo simulations are used to study the behaviour of triangle-well (TW) fluids with variable well widths confined inside slit pores. The effect of individual factors influencing the properties of confined fluids such as fluid–fluid interactions, pore size and pore wall–fluid interactions are obtained using simulations as it is difficult to experimentally determine the same. An interesting observation of this study is that inside the narrow pore of slit height h* = 5 at the high-pressure condition of P* = 0.8, for the TW fluid with long-range attraction or for the fluid at a low temperature for even a short-range attraction, the density profiles show layering such that there is a sticking tendency of the particles at centre, while there is a depletion of particles near the wall (as the layers at the centre have higher density peak heights than near the walls).  相似文献   

10.
The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions. The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles. Other factors, such as fluid viscosity, bulk pressure may also change the slip length. We find that boundary slip only occurs under a certain density (bulk pressure). If the density is large enough, the slip length will tend to zero. In our simulations, a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics. It is the low density layer that induces the boundary slip. The results may be helpful to understand recent experimental observations on the slippage of micro flows.  相似文献   

11.
The physisorption and pore condensation of a polar fluid (CHF3) in a series of MCM-41 type mesoporous silica materials with native and chemically modified pore walls has been studied over the temperature range 168–293 K, corresponding to reduced temperatures T/Tc in the range 0.56-0.98, where Tc is the critical temperature of the fluid. Chemical modification of the pore walls by attachment of Si(CH3)3 groups causes a shift in pore condensation to higher relative pressures p/p0. This effect is most pronounced for materials with narrow pores (2.9 nm) at low temperatures. In the theoretical part of the work density functional theory based on a simple cubic lattice model of the confined fluid has been used to analyse the combined effect of a reduced pore width and weaker fluid-wall interaction caused by the surface coating. For realistic values of the model parameters it is found that the effect of the lower pore width is outweighed by the opposing effect of the lower fluid-wall interactions. The weaker temperature dependence of the pore existence curve observed experimentally for the surface modified materials can be traced back to a crossover from a two-step to a single-step process of pore filling predicted by the model.  相似文献   

12.
A density functional approach is used to study the adsorption of the four-bonding-site model associating Lennard-Jones fluid in slit-Like pores with energetically heterogeneous walls. The fluid-wall potential is qualitatively similar to that invoked by Röcken, P., Somoza, A., Tarazona, P., and Findenegg, G. H., 1999, J. chem. Phys., 108, 8089, i.e. it consists of a homogeneous part that varies in the direction perpendicular to the wall and a periodic part, varying also in one direction parallel to the wall. Both parts are modelled by Lennard-Jones 9,3-type functions. The structure of the adsorbed film is characterized by the local densities of all particles and the densities of the monomers. The phase diagrams are evaluated for several systems characterized by different corrugation of the adsorbing potential. The adsorbing field is strong enough to allow for the layering transition. As well as the formation of the so-called bridge phase that fills the pore space over the most energetic parts of the wall and of capillary condensation, the layering transition is observed within the first layer adjacent to the pore walls. If the adsorbing potential due to each pore wall is shifted in phase by π/2, the bridge phase is not formed.  相似文献   

13.
The phase behavior of fluids near weakly attractive substrates is studied by computer simulations of the coexistence curve of a Lennard-Jones (LJ) fluid confined in a slitlike pore. The temperature dependence of the density profiles of the LJ fluid was used to study the surface critical behavior. A universal critical behavior of the local order parameter, defined as the difference between the local densities of the coexisting liquid and vapor phases at some distance from the pore walls, , is observed in a wide temperature range and found to be consistent with the surface critical behavior of the Ising model. Near the surface the dependence of the order parameter on the reduced temperature obeys a scaling law ~1 with a critical exponent 1 of about 0.8, corresponding to the surface transition. A crossover from bulk-like to surface-like critical behavior occurs, when the distance to the surface is about twice the correlation length at the given temperature. Relations between the and transitions in Ising systems and the surface critical behavior of fluids are discussed.  相似文献   

14.
Statistical mechanical theories of spherical fluid interfaces are discussed in the context of fluids in contact with structureless walls. The thermodynamic route to the surface tension leads to a formula involving gradients of the external field, which is especially suited to the study of fluid-wall systems. The surface tension is found to be determined by the curvature dependence of the density in the region of the wall. For hard walls, potential distribution theory is used to obtain the exact relationship between the statistical mechanical surface tension expression and the grand potential. The accuracy of simple scaled particle theory calculations of the surface tension is estimated from predictions for the equation of state of pair potential fluids with hard core plus attractive tail interactions. Problems with the mechanical route to the curvature dependence of the surface tension are discussed. The planar wall and results for lower dimensionality are included in appendices.  相似文献   

15.
We investigate the fluid—fluid demixing transitions in the case of adsorption of so-called symmetric binary mixtures in slit-like pores at temperatures higher than the bulk gas—liquid critical temperature. The aim of the study is to determine how the demixing of such mixtures in the pores depends on the bulk phase composition and on the parameters characterizing the pore. The calculations have been carried out by means of a density functional theory. In the case of an equimolar bulk mixture, the demixing transition inside the pore occurs only when the adsorption potentials of both species are identical. The occurrence of this transition is manifested by a cusp in the adsorption isotherm. For nonequimolar bulk phase compositions, the transition can also take place if the adsorption energies of both components are different. However, the difference in the adsorption energies should be small enough, otherwise a continuous demixing takes place. For non-equimolar compositions two branches of the grand canonical potential intersect, whereas for equimolar bulk composition they meet tangentially. We have determined phase behaviour for several model systems.  相似文献   

16.
By means of in situ small-angle x-ray diffraction experiments and semi-grand-canonical ensemble Monte Carlo simulations we demonstrate that sorption and condensation of a fluid confined within nanopores is capable of deforming the pore walls. At low pressures the pore is widened due to a repulsive interaction caused by collisions of the fluid molecules with the walls. At capillary condensation the pores contract abruptly on account of attractive fluid-wall interactions whereas for larger pressures they expand again. These features cannot solely be accounted for by effects related to pore-wall curvature but have to be attributed to fluid-wall dispersion forces instead.  相似文献   

17.
We present an improved model for the dissipation and dispersion in an acoustic resonator filled with xenon near its critical temperature Tc. We test the model with acoustic measurements in stirred xenon that have a temperature resolution of (T - Tc)/Tc approximately 7 x 10(-6). The model includes the frequency-dependent bulk viscosity calculated numerically from renormalization-group theory and it includes critical-point adsorption. Because the density of adsorbed xenon exceeds the critical density, the bulk viscosity's effect on surface dissipation is reduced, thereby improving the agreement between theory and experiment.  相似文献   

18.
Local pressure is known to be anisotropic across the interfaces separating fluids in equilibrium. Tangential pressure profiles show characteristic negative peaks as a result of surface tension forces parallel to the interface. Nearby attractive forces parallel to the interface are larger than the repulsive forces and, hence, constitute the surface tension. In this work, using molecular dynamics simulations of methane inside nano-scale pores, we show this surface tension behaviour could be significantly influenced by confinement effects. The layering structure, characterised by damped oscillations in local liquid density and tangential pressures, extends deep into the pore and can be a few nanometers thick. The surface tension is measured numerically using local pressures across the interface. Results show that the tension is smaller under confinement and becomes a variable in small pores, mainly controlled by the thickness of the liquid density layering (or liquid saturation) and the pore width. If the liquid saturation inside the pore is high enough, the vapour–liquid interface is not interfered by the pore wall and the surface tension remains the same as the bulk values. The results are important for understanding phase change and multi-phase transport phenomena in nanoporous materials.  相似文献   

19.
乙烷在中孔分子筛MCM-41中吸附的计算机分子模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
采用计算机模拟方法研究不同温度下乙烷在不同孔径的MCM-41中的吸附.其中乙烷分子采用两个LJ中心的势模型表征,乙烷分子与MCM-41孔壁的相互作用采用一个连续的势模型表示.除考察了温度、孔径对吸附量的影响外,还研究这些量对乙烷分子在孔中的甲基和质心的分布,以及它们对乙烷分子在孔中的排列方向的影响.GCMC模拟结果发现,在180K和300K时壁面处都有较多的乙烷分子倾向于沿着壁面排列,同时在180K时其余的流体分子倾向于垂直于壁面排列,而在300K时其余的分子并不像在180K时一样倾向于垂直于壁面排列.模拟结果还表明,除壁面附近外,即使是在180K的较低温度下,乙烷分子的排列也是混乱和无序的.  相似文献   

20.
The confinement of a lattice fluid in a set of slitlike pores separated by semipermeable walls with a finite width has been studied. The walls are modelled by a square-well repulsive potential with a finite height. The thermodynamic properties and the phase behaviour of the system are evaluated by means of Monte Carlo simulations. For some states theoretical calculations have been made using a mean-field-type theory. These investigations confirm previous findings for confined Lennard-Jones fluids, obtained from a density functional approach. For intermediate and low potential barriers that separate the pores, the isotherms exhibit two hysteresis loops and the liquid-vapour coexistence curve divides into two branches describing condensation inside the pore and inside the permeable wall. These two branches are separated by a triple point. At temperatures lower than the triple point temperature, the condensation takes place instantaneously in both the pore and inside the permeable wall. It was found that when the temperature is scaled by the bulk critical temperature, the phase diagram emerging from this simple mean-field treatment is close to the phase diagram obtained from simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号