首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activated silica gel was directly modified with a cyclic molecule, ethyleneimine, yielding a surface with various nitrogen basic centers, ≡Sil–O(CH2CH2NH)nCH2CH2NH2. Infrared spectroscopy, 13C NMR, thermal, and elemental analyses confirmed the covalent attachment of the organic species onto the silica matrix. The purpose of this paper is to describe the interaction involving the grafted species on silica surface with the divalent heavy cations, Pb(II), Cd(II), and Hg(II), from aqueous solutions at room temperature. The process of metal extraction was followed by the batch method and the order of the maximum extraction capacities found was: 1.27 ± 0.04, 1.02 ± 0.02, and 0.98 ± 0.01 mmol g−1 for Pb(II), Cd(II), and Hg(II) chlorides, respectively. These interactions were followed by calorimetric titration. The enthalpies of these processes are: −3.05 ± 0.02, −1.09 ± 0.01, and −9.88 ± 0.03 kJ mol−1 for Pb(II), Cd(II), and Hg(II), respectively. The standard molar Gibbs free energies are in agreement with the spontaneity of the proposed reactions between cation and basic center.  相似文献   

2.
Silica gel chemically bonded with aminothioamidoanthraquinone was synthesized and characterized. The metal sorption properties of modified silica were studied towards Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). The determination of metal ions was carried out on FAAS. For batch method, the optimum pH ranges for Pb(II), Cu(II) and Cd(II) extraction were ≥3 but for Ni(II) and Co(II) extraction were ≥4. The contact times to reach the equilibrium were less than 10 min. The adsorption isotherm fitted the Langmuir's model showed the maximum sorption capacities of 0.56, 0.30, 0.15, 0.12 and 0.067 mmol/g for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively. In the flow system, a column packed modified silica at 20 mg for Pb(II) and Cu(II), 50 mg for Cd(II), 60 mg for Co(II), Ni(II) was studied at a flow rate of 4 and 2.5 mL/min for Ni(II). The sorbed metals were quantitatively eluted by 1% HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg/L was observed. The application of this modified silica gel to preconcentration of pond water, tap water and drinking water gave high accuracy and precision (%R.S.D. ≤ 9). The method detection limits were 22.5, 1.0, 2.9, 0.95, 1.1 μg/L for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively.  相似文献   

3.
Thermodynamic data on interaction of Cu(II), Ni(II), and Co(II) with silica modified with ethyleneimine are obtained by calorimetric titration. The amount of ethyleneimine anchored on silica surface was estimated to be 0.70 mmol g−1. The enthalpies of binding Ni(II), Cu(II) and Co(II), are −3.59 ± 0.001, −4.88 ± 0.001, and −7.75 ± 0.003 kJ mol−1, respectively.  相似文献   

4.
The chemically modified silica, obtained by reacting 2-mercaptobenz-imidazole with 3-chloropropyl silica gel, was used to adsorb Cu(II), Zn(II), Cd(II) and Pb(II) from aqueous solutions at various pH. Between pH 3–5, the order of selectivity was Hg(II) > Cd(II) Cu(II) Zn(II) Pb(II). Under batch conditions retentions of 100% were achieved for all metals except for Pb(II) where 93% was attained. Under column conditions recoveries of 100% were obtained for all metals.  相似文献   

5.
The removal of heavy metals, such as Cu(II), Cd(II) and Cr(III) from aqueous solution was studied using Chorfa silt material (Mascara, Algeria). The main constituents of silt sediment are quartz, calcite and mixture of clays. The experimental data were described using Freundlich, Langmuir, Dubinin–Radushkevich (D–R) and Langmuir–Freundlich models. The adsorbed amounts of chromium and copper ions were very high (95% and 94% of the total concentration of the metal ions), whereas cadmium ion was adsorbed in smaller (55%) amounts. The Langmuir–Freundlich isotherm model was the best to describe the experimental data. The maximum sorption capacity was found to be 26.30, 11.76 and 0.35 mg/g for Cr3+, Cu2+ and Cd2+, respectively. The results of mean sorption energy, E (kJ/mol) calculated from D–R equation, confirmed that the adsorption of copper, chromium and cadmium on silt is physical in nature.  相似文献   

6.
A novel composite adsorbent, silica aerogel activated carbon was synthesized by sol-gel process at ambient pressure drying method. The composite was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and Nitrogen adsorption/desorption isotherms (BET).In the present study, the mentioned adsorbent was used moderately for the removal of cadmium ions from aqueous solutions and was compared with two other adsorbents of cadmium, activated carbon and silica aerogel. The experiments of Cd adsorption by adsorbents were performed at different initial ion concentrations, pH of the solution, adsorption temperature, adsorbent dosage and contact time. Moreover, the optimum pH for the adsorption was found to be 6.0 with the corresponding adsorbent dosage level of 0.1 g at 60 °C temperature. Subsequently, the equilibrium was achieved for Cd with 120 min of contact time.Consequently, the results show that using this composite adsorbent could remove more than 60% of Cd under optimum experimental conditions. Langmuir and Freundlich isotherm model was applied to analyze the data, in which the adsorption equilibrium data were correlated well with the Freundlich isotherm model and the equilibrium adsorption capacity (qe) was found to be 0.384 mg/g in the 3 mg/L solution of cadmium.  相似文献   

7.
Silica gel was firstly functionalized with aminopropyltrimethoxysilane obtaining the aminopropylsilica gel (APSG). The APSG was reacted subsequently with curcumin yielding curcumin-bonded silica gel (curcumin-APSG). This new bonded silica gel was used for separation, pre-concentration and determination of Cu(II), Fe(III), Zn(II) in biological and natural water samples by inductively coupled plasma optical emission spectrometry (ICP-OES). Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the newly sorbent was 4.0. Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 2.0 mL of 0.1 mol L− 1 of HCl. Common coexisting ions did not interfere with the separation and determination at pH 4.0. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 0.63, 0.46 and 0.37 mmol g− 1 for Cu(II), Fe(III) and Zn(II) respectively. The time for 95% sorption for Cu(II) Fe(III) and Zn(II) was less than 2 min. The detection limits of the method defined by IUPAC was found to be 0.12, 0.15 and 0.40 ng mL− 1 for Cu(II), Fe(III) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was lower 3.0% (n = 5). The procedure was validated by analyzing the certified reference river sediment material (GBW 08301, China), the results obtained were in good agreement with standard values. This sorbent was successfully employed in the separation and pre-concentration of trace Cu(II), Fe(III) and Zn(II) from the biological and natural water samples yielding 75-fold concentration factor.  相似文献   

8.
Three low-cost adsorbents (purified raw attapulgite (A-ATP), high-temperature-calcined attapulgite (T-ATP), and hydrothermal loading of MgO (MgO-ATP)) were prepared as adsorbents for the removal of Cd(II) and Pb(II). By evaluating the effect of the initial solution pH, contact time, initial solution concentration, temperature and coexistence of metal ions on Cd(II) and Pb(II) adsorption, the experimental results showed that MgO-ATP was successfully prepared by hydrothermal reaction and calcination as well as appearing to be a promising excellent adsorbent. At an initial pH of 5.0, A-ATP, T-ATP and MgO-ATP reached maximum adsorption amounts of 43.5, 53.9 and 127.6 mg/g for Pb(II) and 10.9, 11.2, and 25.3 mg/g for Cd(II) at 298 K, respectively. The Cd(II) adsorption on A-ATP was fitted by the Freundlich model, while the adsorption of Pb(II) and Cd(II) on T-ATP and MgO-ATP as well as Pb(II) adsorption on A-ATP agreed with the Langmuir model. All kinetic experimental data favored pseudo second-order model. The calculated thermodynamic parameters suggested that Pb(II) adsorption onto MgO-ATP was spontaneous and exothermic. When considering foreign metal ions, the three adsorbents all presented preferential adsorption for Pb (II). Chemical adsorption had a high contribution to the removal of Cd(II) and Pb(II) by modified attapulgite. In summary, the adsorption was greatly enhanced by the hydrothermal loading of MgO. It aimed to provide insights into the MgO-ATP, which could be able to efficiently remove Cd(II) and Pb(II) and serve as an economic and promising adsorbent for heavy metal-contaminated environmental remediation.  相似文献   

9.
In this paper, a novel composite based on the formation of Schiff base on silica nanoparticles was facilely synthesized. Firstly, silica nanoparticles, which contain silanol groups (Si-OH), were modified with (3-aminopropyl)trimethoxysilane. Then, the modified silica reacted with 1-hydroxy-2-acetonaphthone to form a novel Schiff base/silica composite. The synthesized composite was characterized using several tools such as XRD, FT-IR, FE-SEM, N2 adsorption/desorption analyzer, and CHN analyzer. The considerable reduction at 2θ = 21.9° in the intensity of the XRD peak of the composite is owing to the formation of the Schiff base. Also, the observed FT-IR bands in the composite at 3440 and 1604 cm?1 are owing to the stretching and bending vibrations of OH and/or CN, respectively. The FE-SEM images confirmed that the silica includes irregular shapes whereas the composite possesses a flaky surface owing to the formation of the Schiff base. Elemental analysis of the composite demonstrated that the % C, % H, and % N are 15.26, 3.24, and 1.65 %, respectively. The BET surface area and total pore volume of the composite were reduced because the formed Schiff base blocks the pores of silica. The synthesized composite was employed for the efficient removal of Ni(II), Cu(II), Zn(II), and Hg(II) ions from aqueous media. The maximum uptake capacity of the composite toward Cu(II), Hg(II), Zn(II), and Ni(II) ions is 68.630, 50.942, 45.126, and 40.420 mg/g, respectively. The adsorption processes of the studied metal ions were spontaneous, chemical, and well described using the pseudo-second-order kinetic model and Langmuir equilibrium isotherm. The synthesized composite can be successfully regenerated and utilized various times in the removal of studied metal ions from aqueous media.  相似文献   

10.
The adsorption behavior of Hg(II), Pb(II), and Cd(II) on Duolite C-433 synthetic resin has been determined at different temperatures by batch process. The various thermodynamic parameters, such as equilibrium constant K0, free energy DeltaG0, entropy DeltaS0, and enthalpy DeltaH0, have been calculated in order to predict the nature of sorption.  相似文献   

11.
Thioacetamide immobilized on silica gel was prepared via the Mannich reaction. The extraction and enrichment of copper(II), lead(II), and cadmium(II) ions from aqueous solutions has been investigated. Conditions for effective extraction are optimized with respect to different experimental parameters in both batch and column processes prior to their determination by flame atomic absorption spectrometry (FAAS). The optimum pH ranges for quantitative adsorption are 4.0-8.0, 2.0-7.0, and 5.0-10.0 for Pb(II), Cu(II), and Cd(II), respectively. Pb(II) and Cd(II) can be desorbed with 3 mol/L and 0.1 mol/L HCl/HNO3, and Cu(II) can be desorbed with 2.5% thiourea. The adsorption capacity of the matrix has been found to be 19.76, 16.35, and 12.50 mg/g for Pb(II), Cu(II), and Cd(II), respectively, with the preconcentration factor of approximately equal to 300 for Pb(II) and approximately equal to 200 for Cu(II) and Cd(II). Analytical utility is illustrated in real aqueous samples generated from distilled water, tap water, and river water samples.  相似文献   

12.
In this study, the removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions using the adsorption process onto natural bentonite has been investigated as a function of initial metal concentration, pH and temperature. In order to find out the effect of temperature on adsorption, the experiments were conducted at 20, 50, 75 and 90 °C. For all the metal cations studied, the maximum adsorption was observed at 20 °C. The batch method has been employed using initial metal concentrations in solution ranging from 15 to 70 mg L−1 at pH 3.0, 5.0, 7.0 and 9.0. A flame atomic absorption spectrometer was used for measuring the heavy metal concentrations before and after adsorption. The percentage adsorption and distribution coefficients (K d) were determined for the adsorption system as a function of adsorbate concentration. In the ion exchange evaluation part of the study, it is determined that in every concentration range, adsorption ratios of bentonitic clay-heavy metal cations match to Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR) adsorption isotherm data, adding to that every cation exchange capacity of metals has been calculated. It is shown that the bentonite is sensitive to pH changes, so that the amounts of heavy metal cations adsorbed increase as pH increase in adsorbent-adsorbate system. It is evident that the adsorption phenomena depend on the surface charge density of adsorbent and hydrated ion diameter depending upon the solution pH. According to the adsorption equilibrium studies, the selectivity order can be given as Zn2+>Cu2+>Co2+. These results show that bentonitic clay hold great potential to remove the relevant heavy metal cations from industrial wastewater. Also, from the results of the thermodynamic analysis, standard free energy ΔG 0, standard enthalpy ΔH 0 and standard entropy ΔS 0 of the adsorption process were calculated.  相似文献   

13.
Facile synthesis of two 2-anthracene ammonium-based magnetic ionic liquids (MILs), 2-anthracene ammonium tetrachloroferrate (III) ([2A-A]FeCl4) and 2-anthracene ammonium trichlorocobaltate (II) ([2A-A]CoCl3) was performed by protonation of 2-aminoanthracene, followed complexation with FeCl3/CoCl2. The MILs were tested in the adsorptive removal of Cd2+, As3+, Pb2+ and Cr3+ from water sources. Upon treatment with 10 mg dosage of MILs in 10 mL aqueous solution of 50 ppm each of Cd2+, As3+, Pb2+ and Cr3+, adsorption capacity (mg/g) in the range of 5.73–55.5 and 23.6–56.8 for [2A-A]FeCl4 and [2A-A]CoCl3 respectively were recorded. Thus, the optimization, kinetic and isotherms studies were conducted using the [2A-A]CoCl3 adsorbent. The [2A-A]CoCl3 was more effective in pH 7–9, and equilibrium adsorption was achieved after 60 min contact time. The adsorption process proceeded via the Pseudo-second order pathway and the Langmuir isotherm model is the best fit for the adsorption process (with qmax = 227 – 357 mg/g) of all the targeted metal ions. The [2A-A]CoCl3 adsorbent demonstrated practicality with large distribution and selectivity coefficients of the targeted ions, and up to six times regeneration.  相似文献   

14.
The present work investigates the influence of acid activation of montmorillonite on adsorption of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) from aqueous medium and comparison of the adsorption capacities with those on parent montmorillonite. The clay-metal interactions were studied under different conditions of pH, concentration of metal ions, amount of clay, interaction time, and temperature. The interactions were dependent on pH and the uptake was controlled by the amount of clay and the initial concentration of the metal ions. The adsorption capacity of acid-activated montmorillonite increases for all the metal ions. The interactions were adsorptive in nature and relatively fast and the rate processes more akin to the second-order kinetics. The adsorption data fitted both Langmuir and Freundlich isotherms, indicating that strong forces were responsible for the interactions at energetically nonuniform sites. The Langmuir monolayer capacity of the acid-activated montmorillonite is more than that of the parent montmorillonite (Cd(II): 32.7 and 33.2 mg/g; Co(II): 28.6 and 29.7 mg/g; Cu(II): 31.8 and 32.3 mg/g; Pb(II): 33.0 and 34.0 mg/g; and Ni(II): 28.4 and 29.5 mg/g for montmorillonite and acid-activated montmorillonite, respectively). The thermodynamics of the rate processes showed the adsorption of Co(II), Pb(II), and Ni(II) to be exothermic, accompanied by decreases in entropy and Gibbs free energy, while the adsorption of Cd(II) and Cu(II) was endothermic, with an increase in entropy and an appreciable decrease in Gibbs free energy. The results have established the potential use for montmorillonite and its acid-activated form as adsorbents for Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) ions from aqueous media.  相似文献   

15.
The present work aimed to achieve valorization of Albian sands for the preparation of sodium silicates that are commonly used as a precursor to prepare silica gel. A siliceous sand sample was mixed with sodium carbonate and heated at a high temperature (1060 °C) to prepare sodium silicates. The sodium silicates were dissolved in distilled water to obtain high quality sodium silicate solution. Hydrochloric acid was then slowly added to the hydrated sodium silicates to obtain silica gel. The collected raw siliceous sands, as well as the prepared silica gels, were characterized by different techniques, such as X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermal analysis (DSC). XRF confirmed that the detrital sand deposits of southern Tunisia contain high amounts of silica, with content ranging from 88.8% to 97.5%. The internal porosity varied between 17% and 22%, and the specific surface area was less than 5 m2/g. After the treatment described above, it was observed that the porosity of the obtained silica gel reached 57% and the specific surface area exceeded 340 m2/g. Nitrogen adsorption isotherms showed that the prepared silica gels are microporous and mesoporous materials with high adsorption capacities. These results suggest that the obtained silica gels are promising materials for numerous environmental applications.  相似文献   

16.
The modified sorbents with dithizone and zinc dithizonate adsorbed on the silica surface were obtained. The adsorption of heavy metal ions from aqueous solutions onto loaded silicas was studied. Color scales for Ag(I), Hg(II) and Pb(II) visual test detection were worked out. The modified silica gels were established to be applicable to semi-quantitative determination of these metal ions in buttermilk, natural, mineral and waste water.  相似文献   

17.
The rose leaf was successfully modified through coating with polypyrrole (PPy) in chemical oxidative route in order to remove Pb(II) and Cd(II) from aqueous media. The rose leaf/polypyrrole (RL/PPy) composites were characterized in terms of morphology, chemical structure, and conductivity properties. The spectrum were obtained from FTIR results which support the formation of RL/PPy composites. FTIR and SEM results indicate that the polypyrrole is completely covered on rose leaf. The conductivity of composite (1.8215 S/cm) was higher than polypyrrole (2.06 × 10?3 S/cm). The metal removal studies were monitored by Ultraviolet Visible Absorption Spectrometer (UV-Vis). The optimum conditions were detected for adsorption by changing some experimental conditions (such as adsorbent dosage, contact time and stirring speed, initial concentration of the metal solutions and pH). Following the determination of the optimum conditions, the results of the metal removal from wastewater studies were performed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Under the optimum conditions, the ICP-OES results obtained for waste water showed the useability of composite for the removal of Pb(II) and Cd(II). The Langmuir and Freundlich models are subjected to adsorption datas. The datas fitted better when by using Freundlich model.  相似文献   

18.
The adsorption of copper(II), zinc(II), nickel(II), lead(II), and cadmium(II) on Amberlite IR-120 synthetic sulfonated resin has been studied at different pH and temperatures by batch process. The effects of parameters such as amount of resin, resin contact time, pH, and temperature on the ion exchange separation have been investigated. For the determination of the adsorption behavior of the resin, the adsorption isotherms of metal ions have also been studied. The concentrations of metal ions have been measured by batch techniques and with AAS analysis. Adsorption analysis results obtained at various concentrations showed that the adsorption pattern on the resin followed Freundlich isotherms. Here we report the method that is applied for the sorption/separation of some toxic metals from their solutions.  相似文献   

19.
The polar organic molecule N-(2-hydroxyethyl)-3,5-dimethylpyrazole reacted with a 3-glycidoxypropyltrimethoxysilane silylant agent, previously anchored on a silica surface in a heterogeneous way to yield the product SiPz. The epoxide group was opened yielding chelating pendant group bonded to the inorganic surface. The product was characterized through elemental analysis, infrared spectroscopy, 13C NMR, surface area and thermogravimetry. The binding and adsorption abilities of SiPz was investigated for Hg2+, Cd2+, Pb2+, Cu2+, Zn2+, K+, Na+ and Li+ cations and compared to results of classical liquid-liquid extraction with the unbound N-pyrazole compound. The grafting at the surface of silica does not affect complexing properties of the ligand and the SiPz exhibits a high selectivity toward Hg2+ ion with no complexation being observed towards Zinc and alkali metals. The extracted and the complexing cation percentage were determined by atomic absorption measurements.  相似文献   

20.
Silica gel-bound amines phase modified with p-dimethylaminobenzaldehyde (p-DMABD) was prepared based on chemical immobilization technique. The product (SG-p-DMABD) was used as an adsorbent for the solid-phase extraction (SPE) Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The uptake behaviors of SG-p-DMABD for extracting these metal ions were studied using batch and column procedures. For the batch method, the optimum pH range for Cr(III) and Ni(II) extraction was ≥ 3, for Cu(II), Pb(II) and Zn(II) extraction it was ≥ 4. For simultaneous enrichment and determination of all the metals on the newly designed adsorbent, the pH value if 4.0 was selected. All the metal ions can be desorbed with 2.0 mL of 0.5 mol L− 1 of HCl. The results indicate that SG-p-DMABD has rapid adsorption kinetics using the batch method. The adsorption capacity for these metal ions is in the range of 0.40-1.15 mmol g− 1, with a high enrichment factor of 125. The presence of commonly coexisting ions does not affect the sorption capacities. The detection limits of the method were found to be 1.10, 0.69, 0.99, 1.10 and 6.50 μg L− 1 for Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 5.0% (n = 8) for all metal ions. The method was applied to the preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) from the certified reference material (GBW 08301, river sediment) and water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号