首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Activation of cortical and subcortical motor areas of the brain, including primary motor cortex, supplementary motor area, basal ganglia and cerebellum, were successfully investigated in seven right-handed, normal volunteers during a simple, rapid, thumb flexion-extension task using functional magnetic resonance imaging. A multi-slice echo-planar imaging sequence was used to cover the entire brain. A signal increase varying from 2% to 6% was observed for the different regions involved in the motor task. Moving the non-dominant thumb was associated with a more bilateral activation pattern in both putamen and cerebellar regions. This study demonstrates the capability of functional magnetic resonance imaging to delineate simultaneously many activated brain areas that are commonly thought to be involved in the performance of motor tasks.  相似文献   

2.
Parkinson's disease is a neurological disorder associated with the disfunction of dopaminergic pathways of the basal ganglia, mainly resulting in a progressive alteration in the execution of voluntary movements. We present a functional magnetic resonance imaging (fMRI) study on cortical activations during simple motor task performance, in six early–stage hemiparkinsonian patients and seven healthy volunteers. We acquired data in three sessions, during which subjects performed the task with right or left hand, or bimanually. We observed consistent bilateral activations in cingulate cortex and dorsolateral prefrontal cortex of Parkinsonian subjects during the execution of the task with the affected hand. In addition, patients showed both larger and stronger activations in motor cortex of the affected hemisphere with respect to the healthy hemisphere. Compared with the control group, patients showed a hyperactivation of the dorsolateral prefrontal cortex of the affected hemisphere. We concluded that a presymptomatic reorganization of the motor system is likely to occur in Parkinson's disease at earlier stages than previously hypothesized. Moreover, our results support fMRI as a sensitive technique for revealing the initial involvement of motor cortex areas at the debut of this degenerative disorder.  相似文献   

3.
Myotonic dystrophy type 1 (DM1) is a multisystemic disease involving multiple organ systems including central nervous system (CNS) and muscles. Few studies have focused on the central motor system in DM1, pointing to a subclinical abnormality in the CNS. The aim of our study was to investigate patterns of cerebral activation in DM1 during a motor task using functional MRI (fMRI). Fifteen DM1 patients, aged 20 to 59 years, and 15 controls of comparable age were scanned during a self-paced sequential finger-to-thumb opposition task of their dominant right hand. Functional MRI images were analyzed using SPM99. Patients underwent clinical and genetic assessment; all subjects underwent a conventional MR study. Myotonic dystrophy type 1 patients showed greater activation than controls in bilateral sensorimotor areas and inferior parietal lobules, basal ganglia and thalami, in the ipsilateral premotor area, insula and supplementary motor area (corrected P<.05). Analysis of the interaction between disease and age showed that correlation with age was significantly greater in patients than in controls in bilateral sensorimotor areas and in contralateral parietal areas. Other clinical and MR characteristics did not correlate with fMRI. Functional changes in DM1 may represent compensatory mechanisms such as reorganization and redistribution of functional networks to compensate for ultrastructural and neurochemical changes occurring as part of the accelerated aging process.  相似文献   

4.
5.
The blood oxygen level dependency (BOLD) contrast is a useful tool for functional neuroimaging based on the hemodynamic response to neuronal activation. We observed different hemodynamic responses in the BOLD signal between the primary sensorimotor area (SM1) and the supplementary motor area (SMA) in the sequential finger movement task. In the SMA, a stronger initial overshoot and a post-stimulus overshoot were observed. It was hypothesized from the time course analysis that the stronger initial overshoot reflected the activation of the SMA for motor control programming in the initial phase. Although the post-stimulus overshoot may be partially explained by cerebral blood flow (CBF) cerebral blood volume (CBV) uncoupling, its mechanism remained unknown. In the SM1, only the initial overshoot was observed and the level of BOLD signal was almost constant after the initial overshoot during the task period. These observations suggested that the BOLD signal is characterized by both CBF-CBV uncoupling and the neuronal activation characteristics in each region.  相似文献   

6.
The relationship between the provision of Knowledge of Results and the performance and learning of a voice motor task was examined. Thirty adult subjects, randomly assigned to a 100%, 50%, or No Knowledge of Results group, practiced a novel vowel nasalization task. Measures of accuracy and variability obtained during the practice session indicated influence of knowledge of results schedule on the transient effects of motor performance. Deviations from the nasalance target during the retention phase, 5 minutes later, and during a transfer phase, 24 hours later, indicated influence of knowledge of results schedule on the permanent effects of motor learning. Collective results revealed that an increase in relative frequency of knowledge of results led to a decrease in motor performance and learning of a vowel nasalization task: Both accuracy and variability were degraded as knowledge of results increased, with those subjects in the 100% group exhibiting the poorest scores.  相似文献   

7.
Objective: We explore the effects of body weight-supported (BWS) treadmill training, including the change of cortical activation, on a patient with post-stroke hemidystonia. Patient: The patient was a 71-year-old man with left thalamus hemorrhage. His motor symptoms indicated slight impairment. There was no overactive muscle contraction in the supine, sitting, or standing positions. During his gait, the right initial contact was the forefoot, and his right knee showed an extension thrust pattern. These symptoms suggested that he had post-stroke hemidystonia. Methods: The patient performed BWS treadmill training 14 times over 3 weeks. The effects of the BWS training were assessed by a step-length analysis, electromyography and functional magnetic resonance imaging (fMRI). Results: The patient''s nonparetic step length was extended significantly in the Inter-BWS (p<0.001) and Post-BWS (p=0.025) periods compared to the Pre-BWS session. The excessive muscle activity of the right gastrocnemius medialis in the swing phase was decreased at the Inter-BWS, Post-BWS, and follow-up compared to the Pre-BWS session. The peak timing difference of the bilateral tibialis anterior muscle became significant (p<0.05) on the first day of the intervention. The fMRI revealed that the cortical areas activated by the motor task converged through the intervention (p<0.05, family-wise error corrected). Conclusion: These results suggest that there was improvement of the patient''s symptoms of post-stroke hemidystonia due to changes in the brain activity during voluntary movement after BWS intervention. Body weight-supported treadmill training may thus be an effective treatment for patients with poststroke hemidystonia.  相似文献   

8.
The effects of practice on jitter and shimmer were assessed in two groups of normally speaking women. Subjects in both groups sustained trials of /a/ as steadily as possible during a baseline session, two practice sessions, and a transfer session. Subjects in one group received visual and verbal feedback during the practice sessions. Subjects in the other group received no feedback. Shimmer means remained essentially stable over the four sessions for both groups, and no differences were apparent between the groups. Jitter values were significantly different between sessions for both groups, and between the two groups for the practice sessions. These results are consistent with findings from manual performance and retention tasks. The present findings also support a recently developed neurologic model of jitter.  相似文献   

9.
High-resolution segmented EPI in a motor task fMRI study   总被引:3,自引:0,他引:3  
A high-resolution gradient echo, multi-slice segmented echo planar imaging method was used for functional MRI (fMRI) using a motor task at 1.5 Tesla. Functional images with an in-plane resolution of 1 mm and slice thickness of 4 mm were obtained with good white-gray matter contrast. The multi-shot approach, combined with a short total readout period of 82 ms, limits blurring effects for short T(2)(*) tissues (such as gray matter), assuring truly high-resolution images. In all subjects, motor functions were clearly depicted in the contralateral central sulcus over several slices and sometimes activation was detected in the supplementary motor area and/or ipsilateral central sulcus. The average signal change of 11+/-3% was much higher than in standard low-resolution fMRI EPI experiments, as a result of larger relative blood fractions.  相似文献   

10.
Neural, vascular and structural variables contributing to the blood oxygen level-dependent (BOLD) signal response variability were investigated in younger and older humans. Twelve younger healthy human subjects (six male and six female; mean age: 24 years; range: 19–27 years) and 12 older healthy subjects (five male and seven female; mean age: 58 years; range: 55–71 years) with no history of head trauma and neurological disease were scanned. Functional magnetic resonance imaging measurements using the BOLD contrast were made when participants performed a motor, cognitive or a breath hold (BH) task. Activation volume and the BOLD response amplitude were estimated for the younger and older at both group and subject levels. Mean activation volume was reduced by 45%, 40% and 38% in the elderly group during the motor, cognitive and BH tasks, respectively, compared to the younger. Reduction in activation volume was substantially higher compared to the reduction in the gray matter volume of 14% in the older compared to the younger. A significantly larger variability in the intersubject BOLD signal change occurred during the motor task, compared to the cognitive task. BH-induced BOLD signal change between subjects was significantly less-variable in the motor task-activated areas in the younger compared to older whereas such a difference between age groups was not observed during the cognitive task. Hemodynamic scaling using the BH signal substantially reduced the BOLD signal variability during the motor task compared to the cognitive task. The results indicate that the origin of the BOLD signal variability between subjects was predominantly vascular during the motor task while being principally a consequence of neural variability during the cognitive task. Thus, in addition to gray matter differences, the type of task performed can have different vascular variability weighting that can influence age-related differences in brain functional response.  相似文献   

11.
Block and event-related stimulus designs are typically used in fMRI studies depending on the importance of detection power or estimation efficiency. The extent of vascular contribution to variability in block and event-related fMRI-BOLD response is not known. With scaling, the extent of vascular variability in the fMRI-BOLD response during block and event-related design tasks was investigated. Blood oxygen level-dependent (BOLD) contrast data from healthy volunteers performing a block design motor task and an event-related memory task requiring performance of a motor response were analyzed from the regions of interest (ROIs) surrounding the primary and supplementary motor cortices. Average BOLD signal change was significantly larger during the block design compared to the event-related design. In each subject, BOLD signal change across voxels in the ROIs had higher variation during the block design task compared to the event-related design task. Scaling using the resting state fluctuation of amplitude (RSFA) and breath-hold (BH), which minimizes BOLD variation due to vascular origins, reduced the within-subject BOLD variability in every subject during both tasks but significantly reduced BOLD variability across subjects only during the block design task. The strong non-neural source of intra- and intersubject variability of BOLD response during the block design compared to event-related task indicates that study designs optimizing for statistical power through enhancement of the BOLD contrast (for, e.g., block design) can be affected by enhancement of non-neural sources of BOLD variability.  相似文献   

12.
Brain asymmetry is a phenomenon well known for handedness and has been studied in motor cortices. However, few quantitative studies on asymmetrical cortical activity in motor areas have been conducted. In this study, we systematically investigated asymmetrical cortical activity in motor areas during sequential finger movement by quantitatively analyzing functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) responses. The norm of BOLD signal percentage of change was introduced to quantitatively measure the BOLD signal intensity change difference between the left and right motor areas. The results of the data collected from six subjects show that the norm of BOLD signal percentage of change in the right motor area is higher than that in the left motor area for two-hand movement (P=.0059) and single-hand movement (P=.0279) with right-handedness. These results from fMRI show the asymmetry of motor areas and may suggest that the left hemisphere motor area comes into being as an adaptation system that needs few neuron cells only to finish any movement task for right-handedness. The activation intensity in the left motor area is reduced with normal right finger movement. The activation intensity in the right motor area is obviously higher than that in the left motor area.  相似文献   

13.

Objective

Whereas several studies have used functional magnetic resonance imaging (fMRI) to investigate motor recovery, whether therapy to decrease post-stroke hypertonus alters central motor patterns remains unclear. In this study, we used continuous electromyography (EMG)-fMRI to investigate possible changes in movement-related brain activation in patients receiving Botulinum toxin (BoNT-A) for hand-muscle hypertonus after chronic stroke.

Methods

We studied eight stroke patients all of whom had hemiparesis and associated upper-limb hypertonus. All patients underwent an fMRI-EMG recording and clinical-neurological assessment before BoNT-A and 5 weeks thereafter. The handgrip motor task during imaging was fixed across both patients and controls. The movements were metronome paced, movement amplitude and force were controlled with a plastic orthosis, dynamometer and EMG recording. An age-matched control group was recruited from among healthy volunteers underwent the same fMRI-EMG recording.

Results

Before BoNT-A, while patients moved the paretic hand, fMRI detected wide bilateral activation in the sensorymotor areas (SM1), in the supplementary motor area (SMA) and cerebellum. After BoNT-A blood oxygenation level-dependent (BOLD) activation decreased in ipsilateral and contralateral motor areas and became more lateralized. BOLD activation decreased also in ipsilateral cerebellar regions and in the SMA.

Conclusion

Changes in peripheral upper-limb hypertonus after BoNT-A were associated to an improvement in active movements and more lateralized and focalized activation of motor areas. The clinical and EMG-fMRI coregistration technique we used to study hand-muscle hypertonus in patients receiving BoNT-A after chronic stroke should be useful in future studies seeking improved strategies for post-stroke neurorehabilitation.  相似文献   

14.

Background  

A number of gene expression studies have investigated changes induced by drug exposure, but few reports describe changes that persist following relapse. In this study, genome-wide analysis of gene expression was conducted following an extinction session (90 min) in rats that expressed behavioral incubation of heroin-seeking and goal-directed behavior. As an important modulator of goal-directed behavior, the medial prefrontal cortex (mPFC) was the target of genomic analysis. Rats were trained to self-administer heroin during 3 h daily sessions for 14 d. Following the self-administration period, rats were reintroduced to the self-administration chambers for a 90-minute extinction session in which they could seek heroin, but received none. Extinction sessions were conducted on groups after either 1 d or 14 d of drug-free enforced abstinence to demonstrate behavioral incubation.  相似文献   

15.

Background  

Recent evidence for a tight coupling of sensorimotor processes in trained musicians led to the question of whether this coupling extends to preattentively mediated reflexes; particularly, whether a classically conditioned response in one of the domains (auditory) is generalized to another (tactile/motor) on the basis of a prior association in a second-order Pavlovian paradigm. An eyeblink conditioning procedure was performed in 17 pianists, serving as a model for overlearned audiomotor integration, and 14 non-musicians. Results: During the training session, subjects were conditioned to respond to auditory stimuli (piano tones). During a subsequent testing session, when subjects performed keystrokes on a silent piano, pianists showed significantly higher blink rates than non-musicians.  相似文献   

16.

Background  

Our previous work described the neural processes of motor response inhibition during a stop signal task (SST). Employing the race model, we computed the stop signal reaction time (SSRT) to index individuals' ability in inhibitory control. The pre-supplementary motor area (preSMA), which shows greater activity in individuals with short as compared to those with long SSRT, plays a role in mediating response inhibition. In contrast, the right inferior prefrontal cortex (rIFC) showed greater activity during stop success as compared to stop error. Here we further pursued this functional differentiation of preSMA and rIFC on the basis of an intra-subject approach.  相似文献   

17.
Mirror therapy can be used to promote recovery from paralysis in patients with post-stroke hemiplegia, There are a lot of reports that mirror-image observation of the unilateral moving hand enhanced the excitability of the primary motor area (M1) ipsilateral to the moving hand in healthy subjects. but the neural mechanisms underlying its therapeutic effects are currently unclear. To investigate this issue, we used functional magnetic resonance imaging to measure activity in brain regions related to visual information processing during mirror image movement observation. Thirteen healthy subjects performed a finger-thumb opposition task with the left and right hands separately, with or without access to mirror observation. In the mirror condition, one hand was reflected in a mirror placed above the abdomen in the MRI scanner. In the masked mirror condition, subjects performed the same task but with the mirror obscured. In both conditions, the other hand was held at rest behind the mirror. A between-task comparison (mirror versus masked mirror) revealed significant activation in the ipsilateral hemisphere in the anterior intraparietal sulcus (aIP) while performing all tasks, regardless of which hand was used. The right aIP was significantly activated while moving the right hand. In contrast, in the left aIP, a small number of voxels showed a tendency toward activation during both left and right hand movement. The enhancement of ipsilateral aIP activity by the mirror image observation of finger action suggests that bimodal aIP neurons can be activated by visual information. We propose that activation in the M1 ipsilateral to the moving hand can be induced by information passing through the ventral premotor area from the aIP.  相似文献   

18.
Functional magnetic resonance imaging (fMRI) at high magnetic field strength can suffer from serious degradation of image quality because of motion and physiological noise, as well as spatial distortions and signal losses due to susceptibility effects. Overcoming such limitations is essential for sensitive detection and reliable interpretation of fMRI data. These issues are particularly problematic in studies of awake animals. As part of our initial efforts to study functional brain activations in awake, behaving monkeys using fMRI at 4.7 T, we have developed acquisition and analysis procedures to improve image quality with encouraging results.We evaluated the influence of two main variables on image quality. First, we show how important the level of behavioral training is for obtaining good data stability and high temporal signal-to-noise ratios. In initial sessions, our typical scan session lasted 1.5 h, partitioned into short (<10 min) runs. During reward periods and breaks between runs, the monkey exhibited movements resulting in considerable image misregistrations. After a few months of extensive behavioral training, we were able to increase the length of individual runs and the total length of each session. The monkey learned to wait until the end of a block for fluid reward, resulting in longer periods of continuous acquisition. Each additional 60 training sessions extended the duration of each session by 60 min, culminating, after about 140 training sessions, in sessions that last about 4 h. As a result, the average translational movement decreased from over 500 μm to less than 80 μm, a displacement close to that observed in anesthetized monkeys scanned in a 7-T horizontal scanner.Another major source of distortion at high fields arises from susceptibility variations. To reduce such artifacts, we used segmented gradient-echo echo-planar imaging (EPI) sequences. Increasing the number of segments significantly decreased susceptibility artifacts and image distortion. Comparisons of images from functional runs using four segments with those using a single-shot EPI sequence revealed a roughly twofold improvement in functional signal-to-noise-ratio and 50% decrease in distortion. These methods enabled reliable detection of neural activation and permitted blood-oxygenation-level-dependent-based mapping of early visual areas in monkeys using a volume coil.In summary, both extensive behavioral training of monkeys and application of segmented gradient-echo EPI sequence improved signal-to-noise ratio and image quality. Understanding the effects these factors have is important for the application of high field imaging methods to the detection of submillimeter functional structures in the awake monkey brain.  相似文献   

19.

Background  

Although previous studies suggest that postural control requires attention and other cognitive resources, the central mechanisms responsible for this relationship remain unclear. To address this issue, we examined the effects of altered attention on cortical activity and postural responses following mechanical perturbations to upright stance. We hypothesized that cortical activity would be attenuated but not delayed when mechanical perturbations were applied during a concurrent performance of a cognitive task (i.e. when attention was directed away from the perturbation). We also hypothesized that these cortical changes would be accompanied by alterations in the postural response, as evidenced by increases in the magnitude of anteroposterior (AP) centre of pressure (COP) peak displacements and tibialis anterior (TA) muscle activity. Healthy young adults (n = 7) were instructed to continuously track (cognitive task) or not track (control task) a randomly moving visual target using a hand-held joystick. During each of these conditions, unpredictable translations of a moving floor evoked cortical and postural responses. Scalp-recorded cortical activity, COP, and TA electromyographic (EMG) measures were collected.  相似文献   

20.
Localization of cognitive processes is a strength of functional neuroimaging. However, information about functional interactions between brain areas is crucial for a deeper understanding of brain function. We applied vector autoregressive modeling in the context of Granger causality as a method to analyze directed connectivity in a standard event-related fMRI study using a simple auditory-motor paradigm. The basic idea is to use temporal information in stochastic time series of a brain region in order to predict signal time courses in other brain regions. Thus, we predicted that the method should demonstrate causal influence of the auditory cortex and the supplementary motor area (SMA) on primary motor cortex. Eleven right-handed healthy female subjects were instructed to press a ball with either their left or their right hand when hearing the command "left" or "right" in the scanner. Influence to the left motor cortex was found from bilateral auditory cortex as well as from the SMA in 9 of 11 subjects. Granger causality to the right motor cortex existed from bilateral auditory cortex in 5 and from SMA in 6 subjects. Granger causality to the SMA existed from right auditory cortex in 7 subjects and from left auditory cortex in 8 subjects. Our findings in a simple task show that even under suboptimal circumstances (a relatively long TR of 2440 ms), Granger causality can be a useful tool to explore effective connectivity. Temporally optimized scanning should increase that potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号