首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work a fast, automatic solid-phase extraction procedure hyphenated to HPLC-UV is proposed for screening of priority phenolic pollutants in waters at ng mL−1 levels. A flow through column, containing polystyrene-divinylbenzene sorbent, was incorporated to a multisyringe flow injection system (MSFIA), where the sample loading and analyte elution were carried out after computer control. The MSFIA system also directed the eluent to fill the injection loop of the chromatograph, coupling the sample preparation to its determination. High enrichment factors were attained for phenol and ten of its derivatives (mean value 176 for 50 mL of sample), with LOD values lower than 1 ng mL−1 for the maximum volume of sample used (100 mL). For all analytes, mean recoveries between 89 and 103% were obtained for different water matrices. Certified reference material and a contaminated soil (RTC-CRM 112) were also tested successfully. The determination frequency was 4-10 h−1, providing an automatic, fast and reliable tool for water quality and environmental monitoring.  相似文献   

2.
A multisyringe flow injection system (MSFIA) coupled to a gas-diffusion cell has been developed for the conductometric determination of ammonium in different water samples. Operation strategies, membrane, reagent concentrations, and flow rates have been studied to optimize the sensitivity of detection and to fit the required working range. The proposed MSFIA system has been compared with former FIA and SIA systems using gas diffusion. The system was applied to the determination of ammonium in water samples of different matrices in order to evaluate its performance. These samples were coastal waters, pond waters, and compost aqueous extracts. Good recoveries of 102?±?13% were obtained and no significant differences with the reference methods were found. The system can be used for a wide concentration range of ammonia, from 0.075 to 360?mg?L?1, without sample dilution and with a precision better than 2% of RSD. The throughput of the method was 32 injections per hour.  相似文献   

3.
An automatic system based on multisyringe flow injection analysis (MSFIA) and lab-on-valve (LOV) flow techniques for separation and pre-concentration of 226Ra from drinking and natural water samples has been developed. The analytical protocol combines two different procedures: the Ra adsorption on MnO2 and the BaSO4 co-precipitation, achieving more selectivity especially in water samples with low radium levels.  相似文献   

4.
A multisyringe flow injection analysis system was used for the determination of hypochlorite in cleaning agents, by measurement of the native absorbance of hypochlorite at 292 nm. The methodology was based on the selective decomposition of hypochlorite by a cobalt oxide catalyst giving chloride and oxygen. The difference of the absorbance of the sample before and after its pass through a cobalt oxide column was selected as analytical signal. As no further reagent was required this work can be considered as a contribution to environmental friendly analytical chemistry. The entire analytical procedure, including in-line sample dilution in three steps was automated by first, dilution in a stirred miniature vessel, second by dispersion and third by in-line addition of water using multisyringe flow injection technique. The dynamic concentration range was 0.04-0.78 g L−1 (relative standard deviation lower than 3%), where the extension of the hypochlorite decomposition was of 90 ± 4%. The proposed method was successfully applied to the analysis of commercial cleaning products. The accuracy of the method was established by iodometric titration.  相似文献   

5.
A software-controlled flow-through optical fiber diffuse reflectance sensor capitalized on the implementation of disk-based solid-phase pre-concentration schemes in a multisyringe flow injection analysis (MSFIA) set-up is proposed for the trace determination of sulfide in environmental waters and wastewaters. The fully automated flowing methodology is based on Fischer's coupling reaction of sulfide with N,N-dimethyl-p-phenylenediamine (DMPD) in the presence of Fe(iii) as oxidizing reagent in a 0.5 M HCl medium. The on-line generated methylene blue dye is subsequently delivered downstream to a dedicated optode cell furnished with an octadecyl-chemically modified (C(18)) disk, while continuously recording the diffuse reflectance spectrum of the pre-concentrated compound. A double regeneration protocol is finally executed to warrant minimum background noise and negligible baseline. Under the optimized chemical and hydrodynamic conditions, the optosensing MSFIA method features coefficients of variation better than 0.7%(n= 10) at 50 microg l(-1) concentration, a linear working range of 20-200 microg l(-1) sulfide, a 3sigma(blank) detection limit of 2.9 microg l(-1) sulfide and an injection throughput of 8 h(-1) for a pre-concentration sample volume of 2.9 ml. The interfacing of the robust and versatile multisyringe flow injection-based optode with a plug-in spectrophotometer furnished with a light emitting diode assures the miniaturization of the overall flow analyzer, which is, thus, readily adaptable to real-time monitoring schemes. The potential of the multisyringe flow method was assessed via the determination of sulfide traces in water samples of different complexity (namely, freshwater, seawater and wastewater).  相似文献   

6.
This work is aimed at emphasizing the potential of the multicommutated systems based on the multisyringe flow injection analysis (MSFIA) modality. First, the characteristics, advantages and withdraws offered by flow analysis systems based on the different non-segmented modalities are briefly described. In these systems, multicommutation and computer control of the analytical process occupy a predominant place, as in the case of sequential injection analysis (SIA), multicommutated flow injection analysis (MCFIA), MSFIA and multipumping flow systems (MPFS). Next, several examples are given and different aspects of the implementation of analysers based on MSFIA designs for the construction of different analysis systems, including intelligent (smart) systems, use of sample pre-treatment automatic systems, for chromatographic and non-chromatographic determinations as well as use of monolithic or capillary electrophoresis columns are considered.  相似文献   

7.
In this paper a new flow‐through cell for voltammetric determinations using screen printed electrodes is described. This cell is much simpler than one with similar performances described in a previous work. This new flow‐through cell has been coupled to a multisyringe flow injection system (MSFIA) and to a multiport selection valve allowing the online calibration using the standard addition method. The uses of the MSFIA, together with the small volume of the flow cell and the reduced surface area of the solid phase electrode (SPE) have considerably reduced the volume of reagents and samples to be used. This system has allowed obtaining similar or better detection limits than those obtained using other techniques and flow analysis devices such as SIA, FIA, LOV and microfluidic channels. Graphite ink has been used for the development of screen‐printed electrodes. The determination of Cd and Pb with ASV has been made through its co‐deposition with Bi. For this, Bi(III) solution and the sample were mixed in line. Due to the creation of a new Bi film in each voltammetric cycle, very well defined and reproducible peaks corresponding to Cd and Pb have been obtained. The use of Bi is one of the most important advantages of this system, since it is a recognized substitute for Hg, and its impact on the environment is much lower due to its reduced toxicity. The fact of being an automatic system, the low cost of its components, its simplicity and ease of handling, make it a system that could be useful for monitoring tasks in fieldwork, or measurements on board.  相似文献   

8.
A novel strategy for implementing the automatic standard addition method (SAM) is described. By using a flow-batch system that presents the intrinsic favourable characteristics of the flow and batch techniques, the proposed strategy performs fast standard additions with sufficient flexibility and versatility and employs only one standard solution per analyte. To calculate the analyte concentration, a mathematical model based on a classical SAM and flow variables of the system was developed. The proposed flow-batch SAM was applied to copper determination by flame atomic absorption spectrometry (AAS) in sugar cane-made alcoholic beverages, known as “Cachaça”, available in Brazil. A SAM has been recommended for these analyses because “Cachaças” presents a significantly different composition causing matrix effects and copper determination by calibration using matrix-matching standards can yield inaccurate results. The results show good agreement between the obtained values with the proposed flow-batch SAM and a manual SAM. The mean relative errors and overall standard deviations were always <1.0% (n=6) and 0.2 mg l−1, respectively, for 1.0-7.0 mg l−1 Cu. By using five standard addition levels, the sample throughput was 70 h−1 and the consumption of sample and standard solution were 1.5 and 0.5 ml per analysis, respectively.  相似文献   

9.
Rapid and fully automated multisyringe flow-injection analysis (MSFIA) with a multi-pumping flow system (MPFS) coupled to a long path-length liquid waveguide capillary cell (LWCC) is proposed for the determination of uranium(VI) at ultra trace levels. On-line separation and pre-concentration of uranium is carried out by means of a TRU resin. After elution, uranium(VI) is spectrophotometrically detected after reaction with arsenazo-III. Combination of the MSFIA and MPFS techniques with the TRU-resin enables the analysis to be performed in a short time, using large sample volumes and achieving high selectivity and sensitivity levels. A detection limit of 12.6 ng L−1 (ppt) is reached for a 100-mL sample volume. The versatility of the proposed method also enables pre-concentration of variable sample volumes, enabling application of the analysis to a wide concentration range. Reproducibility of better than 5% and a resin durability of 40 injections should be emphasized. The developed method was successfully applied to different types of environmental sample matrices with recoveries between 95 and 108%.  相似文献   

10.
A smart fully automated system is proposed for determination of thorium and uranium in a wide concentration range, reaching environmental levels. The hyphenation of lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA), coupled to a long path length liquid waveguide capillary cell, allows the spectrophotometric determination of thorium and uranium in different types of environmental sample matrices achieving high selectivity and sensitivity levels. Online separation and preconcentration of thorium and uranium is carried out by means of Uranium and TEtraValents Actinides resin. The potential of the LOV–MSFIA makes possible the full automation of the system by the in-line regeneration of the column and its combination with a smart methodology is a step forward in automation. After elution, thorium(IV) and uranium(VI) are spectrophotometrically detected after reaction with arsenazo-III. We propose a rapid, inexpensive, and fully automated method to determine thorium(IV) and uranium(VI) in a wide concentration range (0–1,200 and 0–2,000 μg L-1 Th and U, respectively). Limits of detection reached are 5.9 ηg L-1 of uranium and 60 ηg L-1 of thorium. Different water sample matrices (seawater, well water, freshwater, tap water, and mineral water), and a channel sediment reference material which contained thorium and uranium were satisfactorily analyzed with the proposed method.  相似文献   

11.
Leal LO  Forteza R  Cerdà V 《Talanta》2006,69(2):500-508
In this study, a new technique by hydride generation-atomic fluorescence spectrometry (HG-AFS) for determination and speciation of inorganic arsenic using multisyringe flow injection analysis (MSFIA) is reported. The hydride (arsine) was generated by injecting precise known volumes of sample, a reducing sodium tetrahydroborate solution (0.2%), hydrochloric acid (6 M) and a pre-reducing solution (potassium iodide 10% and ascorbic acid 0.2%) to the system using a multisyringe burette coupled with one multi-port selection valve. This solution is used to pre-reduce As(V) to As(III), when the task is to speciate As(III) and As(V). As(V) is determined by the difference between total inorganic arsenic and As(III). The reagents are dispensed into a gas-liquid separation cell. An argon flow delivers the arsine into the flame of an atomic fluorescence spectrometer. A hydrogen flow has been used to support the flame. Nitrogen has been employed as a drier gas (Fig. 1).Several variables such as sample and reagents volumes, flow rates and reagent concentrations were investigated in detail. A linear calibration graph was obtained for arsenic determination between 0.1 and 3 μg l−1. The detection limit of the proposed technique (3σb/S) was 0.05 μg l−1. The relative standard deviation (R.S.D.) of As at 1 μg l−1 was 4.4 % (n = 15). A sample throughput of 10 samples per hour was achieved. This technique was validated by means of reference solid and water materials with good agreement with the certified values. Satisfactory results for speciation of As(III) and As(V) by means of the developed technique were obtained.  相似文献   

12.
A fast and simple multisyringe flow injection analysis (MSFIA) method for routine determination of thorium in water samples was developed. The methodology was based on the complexation reaction of thorium with arsenazo (III) at pH 2.0. Thorium concentrations were spectrophotometrically detected at 665 nm. Under optimal conditions, Beer’s law was obeyed over the range from 0.2 to 4.5 μg mL−1 thorium, a 3σ detection limit of 0.05 μg mL−1, and a 10σ quantification limit of 0.2 μg mL−1 were obtained. The relative standard deviations (RSD, %) at 0.5, 2.5 and 4.5 μg mL−1 was 2.8, 1.5 and 0.8%, respectively (n = 10). It was found that most of the common metal ions and anions did not interfere with the thorium determination. The proposed method was successfully applied to its analysis in various water samples.  相似文献   

13.
A new multisyringe flow injection system for total inorganic selenium determination by hydride generation-atomic fluorescence spectrometry (HGAFS) has been proposed. The flow methodology is based on the simultaneous injection of sample in the acid media (50% HCl), a reducing sodium tetrahydroborate solution (0.18%) and a solution of hydrochloric acid (50%) which are dispensed into a gas-liquid separation cell by using a multisyringe burette coupled with one multiport selection valve. The usage of the time-based injection increases the sample throughput and provides precise known volumes of sample. The hydride of selenium is delivered into the flame of an atomic fluorescence spectrometer by means of an argon flow. A hydrogen flow has been used to support the flame.The technique can be applied over a wide range of concentrations of selenium between 0.1 and 3.5 μg l−1 with good repeatability (relative standard deviation (R.S.D.) values 4.6-7% for 1 μg l−1 of Se). The detection limit of the developed technique (3σb/S) was 0.01 μg l−1. A sample throughput was 28 samples per hour (84 injections). The multisyringe technique has been validated by means of reference solid (sea lettuce) and water (hard drinking water) materials with good agreement with certified values. The analytical features were compared with those obtained by using of the commercial flow injection analysis (FIA) system. The proposed method provides a higher sampling frequency and a significant reduction of reagent and sample consumption in front the flow injection application.  相似文献   

14.
Ferrer L  de Armas G  Miró M  Estela JM  Cerdà V 《Talanta》2005,68(2):343-350
An automatic multisyringe flow injection analysis (MSFIA) system coupling a flow-through optical fiber diffuse reflectance sensor with in-line gas-diffusion (GD) separation is proposed for the isolation, preconcentration and determination of traces of volatile and gas-evolving compounds in samples containing suspended solids, with no need for any preliminary batch sample treatment. The flowing methodology overcomes the lost of sensitivity of the in-line separation technique, when performed in a uni-directional continuous-flow mode, through the implementation of disk-based solid-phase extraction schemes. The high selectivity and sensitivity, the low reagent consumption and the miniaturization of the whole assembly are the outstanding features of the automated set-up. The proposed combination of techniques for separation, flow analysis, preconcentration and detection was applied satisfactorily to sulfide determination in environmental complex matrixes. The method based on multicommutation flow analysis involves the stripping of the analyte as hydrogen sulfide from the donor channel of the GD-module into an alkaline receiver segment, whereupon the enriched plug merges with well-defined zones of the chormogenic reagents (viz., N,N-dimethyl-p-phenylenediamine (DMPD) and Fe(III)). The in-line generated methylene blue dye is subsequently delivered downstream to the dedicated optrode cell furnished with a C18 disk, while recording continuously the diffuse reflectance spectrum of the pre-concentrated compound. This procedure provides a linear working range of 20-500 μg l−1 sulfide with a relative standard deviation of 2.2% (n = 10) at the 200 μg l−1 level, and a detection limit of 1.3 μg l−1.  相似文献   

15.
1-Naphthylamine (NPA) is one of the main degradation products of pesticides derived from naphthalene, and a well-known bladder carcinogen in men. The Griess assay is used for NPA determination because of its high sensitivity and selectivity. The azo dye 4-(sulphophenylazo)-1-naphthylamine is formed, which shows a peak maximum at 540 nm. After optimizing multisyringe flow injection analysis (MSFIA) parameters, the analytical characteristics of the method were obtained, with a working linear range of 0.5 to 14 mg L−1, according to the equation A = 0.0738±0.0019 [NPA] + 0.0028 ± 0.0042, r = 0.9997. Values for RSD (%) and Erel (%) were calculated for the concentration levels of 0.5, 6 and 12 mg L−1; values obtained were 1.1, 0.4 and 0.3% for RSD and 0.8, 0.3 and 0.2% for Erel, respectively. LD was 0.01 mg L−1 and LQ was 0.04 mg L−1 NPA. The MSFIA procedure for the determination of NPA was applied to different water samples (well water, tap water, seawater, and wastewater from the EDAR-1, Palma de Mallorca water treatment plant), with satisfactory results and a throughput of 90 samples per hour.  相似文献   

16.
Water soluble tertiary amines enhance signals and decrease polyatomic chloride interferences in the direct inductively coupled plasma – mass spectrometric (ICP-MS) determination of As and Se in biological samples. Preliminary experiments with amine concentrations and nebulizer flow rates produced element and interference signal intensity changes. Arsenic and Se ICP-MS determination parameters have been optimized by a simplex procedure with amines in an argon plasma or without amines but with addition of N2 to the Ar. Variables include RF (radio frequency) power, nebulizer gas flow rate, intermediate gas flow rate, and amine concentration or nitrogen gas flow rate. Detection limit, minimization of polyatomic ion intensities, and reproducibility have been evaluated as reponse factors. The signal enhancement and element-to-molecular interference ratios differ to some extent with analyte intensity optimum operating conditions. The detection limits with addition of nitrogen (16 pg mL–1 for As and 180 pg mL–1 for Se) or of amines (8 pg mL–1 for As and 120 pg mL–1 for Se) and the extent of chloride interference minimization were compared. Amines addition was more beneficial. Biological standard reference materials and food and fecal samples were analyzed following different sample dissolution procedures.  相似文献   

17.
Water soluble tertiary amines enhance signals and decrease polyatomic chloride interferences in the direct inductively coupled plasma – mass spectrometric (ICP-MS) determination of As and Se in biological samples. Preliminary experiments with amine concentrations and nebulizer flow rates produced element and interference signal intensity changes. Arsenic and Se ICP-MS determination parameters have been optimized by a simplex procedure with amines in an argon plasma or without amines but with addition of N2 to the Ar. Variables include RF (radio frequency) power, nebulizer gas flow rate, intermediate gas flow rate, and amine concentration or nitrogen gas flow rate. Detection limit, minimization of polyatomic ion intensities, and reproducibility have been evaluated as reponse factors. The signal enhancement and element-to-molecular interference ratios differ to some extent with analyte intensity optimum operating conditions. The detection limits with addition of nitrogen (16 pg mL–1 for As and 180 pg mL–1 for Se) or of amines (8 pg mL–1 for As and 120 pg mL–1 for Se) and the extent of chloride interference minimization were compared. Amines addition was more beneficial. Biological standard reference materials and food and fecal samples were analyzed following different sample dissolution procedures.  相似文献   

18.
A new analytical method was developed for on-line monitoring of residual coagulants (aluminium and iron salts) in potable water. The determination was based on a sequential procedure coupling an extraction/enrichment step of the analytes onto a modified resin and a spectrophotometric measurement of a surfactant-sensitized binary complex formed between eluted analytes and Chrome Azurol S. The optimization of the solid phase extraction was performed using factorial design and a Doehlert matrix considering six variables: sample percolation rate, sample metal concentration, flow-through sample volume (all three directly linked to the extraction step), elution flow rate, concentration and volume of eluent (all three directly linked to the elution step). A specific reagent was elaborated for sensitive and specific spectrophotometric determination of Al(III) and Fe(III), by optimizing surfactant and ligand concentrations and buffer composition. The whole procedure was automated by a multisyringe flow injection analysis (MSFIA) system. Detection limits of 4.9 and 5.6 μg L−1 were obtained for Al(III) and Fe(III) determination , respectively, and the linear calibration graph up to 300 μg L−1 (both for Al(III) and Fe(III)) was well adapted to the monitoring of drinking water quality. The system was successfully applied to the on-site determination of Al(III) and Fe(III) at the outlet of two water treatment units during two periods of the year (winter and summer conditions).  相似文献   

19.
20.
Particle beam hollow cathode optical emission spectroscopy (PB/HC-OES) is evaluated as a generic tool for total protein determinations by monitoring the carbon atomic emission (C (I) 193.0 nm) resultant from dissociated analyte species. Previous studies demonstrated the capability of the PB/HC-OES system for total protein determinations with limits of detection for bovine serum albumin (BSA) samples being at the single-nanogram level for 200 l injections. Non-linear behavior across the concentration range in the calibration curve was observed due to the poor transport of small particles (owing to low analyte concentrations) through the PB interface. The potential use of non-volatile salts as carrier agents is investigated in the determination of protein samples by PB/HC-OES. A range of chloride salts (different cations), potassium salts (different anions), and an organic modifier (ammonium acetate) is investigated here for possible use as carriers upon addition as sample injection matrices for protein samples. The analyte response curves of BSA samples with KCl added as the sample injection matrix show higher sensitivity, better linearity (R2) and subsequently lower detection limits in comparison to those obtained with water, HCl, KNO3 or ammonium acetate as carrier matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号