首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A pure stress formulation of linear nonhomogeneous anisotropic elastodynamics with continuously distributed defects (EcDD) is proposed, and well known solutions of ECDD corresponding to stationary and moving concentrated plastic fields in an infinite body are recovered by direct integration of the stress field equation. A new interpretation of the solutions is given.  相似文献   

3.
A Mindlin continuum model that incorporates both a dependence upon the microstructure and inelastic (nonlinear) behavior is used to study dispersive effects in elasto-plastic microstructured materials. A one-dimensional equation of motion of such material systems is derived based on a combination of the Mindlin microcontinuum model and a hardening model both at the macroscopic and microscopic level. The dispersion relation of propagating waves is established and compared to the classical linear elastic and gradient-dependent solutions. It is shown that the observed wave dispersion is the result of introducing microstructural effects and material inelasticity. The introduction of an internal characteristic length scale regularizes the ill-posedness of the set of partial differential equations governing the wave propagation. The phase speed does not necessarily become imaginary at the onset of plastic softening, as it is the case in classical continuum models and the dispersive character of such models constrains strain softening regions to localize.  相似文献   

4.
The technique of distributed dislocations proved to be in the past an effective approach in studying crack problems within classical elasticity. The present work is intended to extend this technique in studying crack problems within couple-stress elasticity, i.e. within a theory accounting for effects of microstructure. This extension is not an obvious one since rotations and couple-stresses are involved in the theory employed to analyze the crack problems. Here, the technique is introduced to study the case of a mode I crack. Due to the nature of the boundary conditions that arise in couple-stress elasticity, the crack is modeled by a continuous distribution of climb dislocations and constrained wedge disclinations (the concept of ‘constrained wedge disclination’ is first introduced in the present work). These distributions create both standard stresses and couple stresses in the body. In particular, it is shown that the mode-I case is governed by a system of coupled singular integral equations with both Cauchy-type and logarithmic kernels. The numerical solution of this system shows that a cracked solid governed by couple-stress elasticity behaves in a more rigid way (having increased stiffness) as compared to a solid governed by classical elasticity. Also, the stress level at the crack-tip region is appreciably higher than the one predicted by classical elasticity.  相似文献   

5.
An inelastic rate-dependent crystalline constitutive formulation and specialized computational schemes have been developed and used to obtain a detailed understanding of the interrelated physical mechanisms that can result in ductile material failure in rate-dependent porous crystalline materials subjected to finite inelastic deformations. The effects of void growth and interaction and specimen necking on material failure have been investigated for a single material cell, with a discrete cluster of four voids, where geometrical parameters have been varied to result in seven unique periodic and random void arrangements. The interrelated effects of void distribution and geometry, strain hardening, geometrical softening, localized plastic strains and slip-rates, and hydrostatic stresses on failure paths and ligament damage in face centered cubic (f.c.c.) crystalline materials have been studied. Results from this study are consistent with experimental observations that ductile failure can occur either due to void growth parallel to the stress axis, which results in void coalescence normal to the stress axis, or void interaction along bands, which are characterized by intense shear-strain localization and that intersect the free surface at regions of extensive specimen necking.  相似文献   

6.
The influence of the plasticity yield surface on the development of instabilities in plane plates in biaxial loading is analyzed in order to understand and simulate the localization pattern observed in an expanding hemisphere experiment. First, a criterion for the activation of slip bands is formulated in the form of a critical hardening coefficient: it is particularized to the Von Mises and Tresca surfaces. In the Von Mises case, the criterion gives a strongly negative hardening coefficient in biaxial loading conditions different from the ones of plane strain. In the Tresca case, the criterion is fulfilled for a perfectly plastic material in uniaxial and biaxial loading; besides, in equi-biaxial loading, two possible orientations for slip bands are exhibited; this can be understood, with a few approximations, by the existence of a vertex point on the Tresca yield surface which give additive degrees of freedom for the direction of the plastic strain rate. Second, the development of localization in the loading conditions met in an expanding hemisphere experiment is simulated using both plasticity yield surfaces; whereas the Von Mises simulation does not localize, the Tresca simulation exhibits a pattern composed of a network of shear bands of different orientations; this pattern is not far from the pattern observed experimentally.  相似文献   

7.
This paper deals with the mean-field homogenization of multiphase elasto-plastic materials reinforced with non-spherical and non-aligned inclusions. Most of the literature on the micro–macro modeling of elasto-plastic composites deals with fixed-orientation fibers but this paper is concerned with cases where the inclusions have a non-uniform orientation defined by an orientation distribution function (ODF). We propose a general two-step incremental formulation and the corresponding numerical algorithms which are able to deal with any rate-independent model for any phase as well as cyclic or otherwise non-proportional loadings. The formulation was implemented in the DIGIMAT (2003) software and the numerical predictions were validated against experimental data for several composite systems.  相似文献   

8.
The influence of the plasticity yield surface – and of its evolution with plastic deformation – on the development of instabilities in metals is analyzed. Conditions for the activation of slip bands are taken as an instability criterion. They are exhibited in stress states identical to the ones encountered in a flat plate in biaxial tension. The classical bifurcation criterion is replaced by a criterion on the growth of a perturbation at a time scale comparable to the one of the homogeneous solution. This second criterion reveals less severe than the bifurcation one which is reached for the limit case of an infinite growth rate in the perturbation approach. The growth rate is a decreasing function of the biaxiality of the loading which is in agreement with previous studies. The possible destabilizing effect of texture evolution is also exhibited by using an evolving yield surface the curvature of which increases in the neighborhood of the homogeneous solution.  相似文献   

9.
In sheet metal forming processes local material points can experience multi-axial and multi-path loadings. Under such loading conditions, conventional phenomenological material formulations are not capable to predict the deformation behavior within satisfying accuracy. While micro-mechanical models have significantly improved the understanding of the deformation processes under such conditions, these models require large sets of material data to describe the micromechanical evolution and quite enormous computation expenses for industrial applications. To reduce the drawbacks of phenomenological material models under the multi-path loadings a new anisotropic elasto-plastic material formulation is suggested. The model enables the anisotropic yield surface to grow (isotropic hardening), translate (kinematic hardening) and rotate (rotation of the anisotropy axes) with respect to the deformation, while the shape of the yield surface remains essentially unchanged.Essentially, the model is formulated on the basis of an Armstrong–Frederick type kinematic hardening, the plastic spin theory for the reorientation of the symmetry axes of the anisotropic yield function, and additional terms coupling these expressions. The capability of the model is illustrated with multi-path loading simulations in ‘tension-shear’ and ‘reverse-shear’ to assess its performance with ‘cross’ hardening and ‘Bauschinger’ effects.  相似文献   

10.
In order to predict the deformations under multi-axial and multi-path loadings in a phenomenological framework, a new rotational-isotropic-kinematic (RIK) hardening model has been suggested in the theory part of the paper combining isotropic, kinematic and rotational hardening. Essential features of this material model are Armstrong–Frederick type backstress components for kinematic hardening and a plastic spin for the rotational hardening describing the evolution of the symmetry axes of the anisotropic yield function.The purpose of this article is to illustrate the significance of the RIK hardening model in sheet metal forming applications as well as in springback predictions. With the rotational hardening and a correction term related to the kinematic hardening, the flow stress in each orientation can be described with few material parameters. Several benchmark problems are considered to illustrate and assess the performance of the RIK hardening model in comparison with other hardening models and experimental results.  相似文献   

11.
12.
The present paper addresses a flexible solution algorithm for associative isotropic elasto-plastic materials, i.e. for materials whose elastic and plastic behaviors are described through an isotropic free-energy function, an isotropic yield function and an associative flow rule. The discussion is relative to a large deformation regime, while no hardening mechanisms are included. The algorithm is based on a combination of the operator split method and a return map scheme. Both the algorithm linearization and the requirements for the yield criterion convexity are discussed in detail. Finally, to show the algorithm flexibility and performance, the discussion is specialized to three yield criteria and some test problems are studied.  相似文献   

13.
Over the past decade, many computational studies have explored the mechanics of normal indentation. Quantitative relationships have been well established between the load–displacement hysteresis response and material properties. By contrast, very few studies have investigated broad quantitative aspects of the effects of material properties, especially plastic deformation characteristics, on the frictional sliding response of metals and alloys. The response to instrumented, depth-sensing frictional sliding, hereafter referred to as a scratch test, could potentially be used for material characterization. In addition, it could reproduce a basic tribological event, such as asperity contact and deformation, at different length scales for the multi-scale modeling of wear processes. For these reasons, a comprehensive study was undertaken to investigate the effect of elasto-plastic properties, such as flow strength and strain hardening, on the response to steady-state frictional sliding. Dimensional analysis was used to define scaling variables and universal functions. The dependence of these functions on material properties was assessed through a detailed parametric study using the finite element method. The strain hardening exponent was found to have a greater influence on the scratch hardness and the pile-up height during frictional sliding than observed in frictionless normal indentation. When normalized by the penetration depth, the pile-up height can be up to three times larger in frictional sliding than in normal indentation. Furthermore, in contrast to normal indentation, sink-in is not observed during frictional sliding over the wide range of material properties examined. Finally, friction between indenter and indented material was introduced in the finite element model, and quantitative relationships were also established for the limited effects of plastic strain hardening and yield strength on the overall friction coefficient. Aspects of the predictions of computational simulations were compared with experiments on carefully selected metallic systems in which the plastic properties were systematically controlled. The level of accuracy of the predicted frictional response is also assessed by recourse to the finite element method and by comparison with experiment.  相似文献   

14.
For a spatially-extended dynamical system we illustrate the use of a chaotic dynamics approach to obtain criteria on the occurrence of noise-induced escapes from a preferred region of phase space. Our system is a buckled column with continuous mass, subjected to a transverse continuously distributed load that varies randomly with time. We obtain a stochastic counterpart of the Melnikov necessary condition for chaos—and snap-through—derived by Holmes and Mardsen for the harmonic loading case. Our approach yields a lower bound for the probability that snap-through cannot occur during a specified time interval. In particular, for excitations with finite-tailed marginal distribution, a simple criterion is obtained that guarantees the non-occurrence of snap-through.  相似文献   

15.
This paper is divided into two major sections. The first of these describes the types of defects which may arise in crystalline materials. These may be classified as point, line, sheet and volume defects, examples of the four groups being vacancies, dislocations, grain boundaries and precipitates. The basic defects of crystal structures are first described, particular attention being paid to dislocation lines and the way in which a perfect dislocation may dissociate into two partial dislocations and a ribbon of stacking fault. The motion of defects, including glide, climb and cross-slip is discussed. This section ends with a summary of the ways in which basic defects may interact and combine, and be used to describe such microstructural features as deformation twins and precipitate boundaries. These defects form the basis of the mechanisms, given in the second part of the paper, which have been used to explain the various phenomena of hardening and fracture. No attempt has been made to give detailed theories of these mechanical properties. The treatment is intended for the nonspecialist, interested in obtaining an understanding of how a knowledge of the microstructure of materials may be applied to specific problems.  相似文献   

16.
In this article a stress integration algorithm for shell problems with planar anisotropic yield functions is derived. The evolution of the anisotropy directions is determined on the basis of the plastic and material spin. It is assumed that the strains inducing the anisotropy of the pre-existing preferred orientation are much larger than subsequent strains due to further deformations. The change of the locally preferred orientations to each other during further deformations is considered to be neglectable. Sheet forming processes are typical applications for such material assumptions. Thus the shape of the yield function remains unchanged. The size of the yield locus and its orientation is described with isotropic hardening and plastic and material spin.The numerical treatment is derived from the multiplicative decomposition of the deformation gradient and thermodynamic considerations in the intermediate configuration. A common formulation of the plastic spin completes the governing equations in the intermediate configuration. These equations are then pushed forward into the current configuration and the elastic deformation is restricted to small strains to obtain a simple set of constitutive equations. Based on these equations the algorithmic treatment is derived for planar anisotropic shell formulations incorporating large rotations and finite strains. The numerical approach is completed by generalizing the Return Mapping algorithm to problems with plastic spin applying Hill’s anisotropic yield function. Results of numerical simulations are presented to assess the proposed approach and the significance of the plastic spin in the deformation process.  相似文献   

17.
This paper develops a three-dimensional theory for the superelastic response of single-crystal shape-memory materials. Since energetic considerations play a major role in the phase transformations associated with the superelastic response, we have developed the theory within a framework that accounts for the laws of thermodynamics. We have implemented a special set of constitutive equations resulting from the general theory in a finite-element computer program, and using this program have simulated the superelastic response of a single crystal Ti-Ni shape-memory alloy under both isothermal and thermo-mechanically coupled situations. Both manifestations of superelasticity—stress-strain response at fixed temperature and strain-temperature response at fixed stress—are explored. The single-crystal constitutive-model is also used to discuss the superelastic response of a polycrystalline aggregate with a random initial crystallographic texture. The overall features of the results from the numerical simulations are found to be qualitatively similar to existing experimental results on Ti-Ni.  相似文献   

18.
We develop homogenization schemes and numerical algorithms for two-phase elasto-plastic composite materials and structures. A Hill-type incremental formulation enables the simulation of unloading and cyclic loadings. It also allows to handle any rate-independent model for each phase. We study the crucial issue of tangent operators: elasto-plastic (or “continuum”) versus algorithmic (or “consistent”), and anisotropic versus isotropic. We apply two methods of extraction of isotropic tangent moduli. We compare mathematically the stiffnesses of various tangent operators. All rate equations are discretized in time using implicit integration. We implemented two homogenization schemes: Mori–Tanaka and a double inclusion model, and two plasticity models: classical J2 plasticity and Chaboche’s model with non-linear kinematic and isotropic hardenings. We consider composites with different properties and present several discriminating numerical simulations. In many cases, the results are validated against finite element (FE) or experimental data. We integrated our homogenization code into the FE program ABAQUS using a user material interface UMAT. A two-scale procedure allows to compute realistic structures made of non-linear composite materials within reasonable CPU time and memory usage; examples are shown.  相似文献   

19.
The aim of this paper is to study disclinations in the framework of a second strain gradient elasticity theory. This second strain gradient elasticity has been proposed based on the first and second gradients of the strain tensor by Lazar et al. [Lazar, M., Maugin, G.A., Aifantis, E.C., 2006. Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43, 1787–1817]. Such a theory is an extension of the first strain gradient elasticity [Lazar, M., Maugin, G.A., 2005. Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157–1184] with triple stress. By means of the stress function method, the exact analytical solutions for stress and strain fields of straight disclinations in an infinitely extended linear isotropic medium have been found. An important result is that the force stress, double stress and triple stress produced by wedge and twist disclinations are nonsingular. Meanwhile, the corresponding elastic strain and its gradients are also nonsingular. Analytical results indicate that the second strain gradient theory has the capacity of eliminating all unphysical singularities of physical fields.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号