首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theory of material growth (mass creation and resorption) is presented in which growth is viewed as a local rearrangement of material inhomogeneities described by means of first- and second-order uniformity “transplants”. An essential role is played by the balance of canonical (material) momentum where the flux is none other than the so-called Eshelby material stress tensor. The corresponding irreversible thermodynamics is expanded. If the constitutive theory of basically elastic materials is only first-order in gradients, diffusion of mass growth cannot be accommodated, and volumetric growth then is essentially governed by the inhomogeneity velocity “gradient” (first-order transplant theory) while the driving force of irreversible growth is the Eshelby stress or, more precisely, the “Mandel” stress, although the possible influence of “elastic” strain and its time rate is not ruled out. The application of various invariance requirements leads to a rather simple and reasonable evolution law for the transplant. In the second-order theory which allows for growth diffusion, a second-order inhomogeneity tensor needs to be introduced but a special theory can be devised where the time evolution of the second-order transplant can be entirely dictated by that of the first-order one, thus avoiding insuperable complications. Differential geometric aspects are developed where needed.  相似文献   

2.
Corotational rates in constitutive modeling of elastic-plastic deformation   总被引:1,自引:0,他引:1  
The principal axes technique is used to develop a new hypoelastic constitutive model for an isotropic elastic solid in finite deformation. The new model is shown to produce solutions that are independent of the choice of objective stress rate. In addition, the new model is found to be equivalent to the isotropic finite elastic model; this is essential if both models describe the same material.

The new hypoelastic model is combined with an isotropic flow rule to form an elastic-plastic rate constitutive equation. Use of the principal axes technique ensures that the stress tensor is coaxial with the elastic stretch tensor and that solutions do not depend on the choice of objective stress rate. The flow rule of von Mises and a parabolic hardening law are used to provide an example of application of the new theory. A solution is obtained for the prescribed deformation of simple rectilinear shear of an isotropic elastic and isotropic elastic-plastic material.  相似文献   


3.
We present a formulation of continuum damage in glacier ice that incorporates the induced anisotropy of the damage effects but restricts these formally to orthotropy. Damage is modeled by a symmetric second rank tensor that structurally plays the role of an internal variable. It may be interpreted as a texture measure that quantifies the effective specific areas over which internal stresses can be transmitted. The evolution equation for the damage tensor is motivated in the reference configuration and pushed forward to the present configuration. A spatially objective constitutive form of the evolution equation for the damage tensor is obtained. The rheology of the damaged ice presumes no volume conservation. Its constitutive relations are derived from the free enthalpy and a dissipation potential, and extends the classical isotropic power law by elastic and damage tensor dependent terms. All constitutive relations are in conformity with the second law of thermodynamics.PACS 83.60.Df, 62.20.Mk  相似文献   

4.
A formulation for anisotropic damage is established in the framework of the principle of strain equivalence. The damage variable is still related to the surface density of microcracks and microvoids and, as its evolution is governed by the plastic strain, it is represented by a second order tensor and is orthotropic. The coupling of damage with elasticity is written through a tensor on the deviatoric part of the energy and through a scalar taken as its trace on the hydrostatic part. The kinetic law of damage evolution is an extension of the isotropic case. Here, the principal components of the damage rate tensor are proportional to the absolute value of principal components of the plastic strain rate tensor and are a nonlinear function of the effective elastic strain energy. The proposed damage evolution law does not introduce any other material parameter. Several series of experiments on metals give a good validation of this theory. The coupling of damage with plasticity and the quasi-unilateral conditions of partial closure of microcracks naturally derive from the concept of effective stress. Finally, a study of strain localization makes it possible to determine the critical value of the damage at mesocrack initiation.  相似文献   

5.
6.
针对各向同性材料,基于一组相互正交的基张量,建立了一套有效的相关运算方法.基张量中的两个分别是归一化的二阶单位张量和偏应力张量,另一个则使用应力的各向同性二阶张量值函数经过归一化构造所得,三者共主轴.根据张量函数表示定理,本构方程和返回映射算法中所涉及到的应力的二阶、四阶张量值函数及其逆都由这组基所表示.推演结果表明:这些张量之间的运算,表现为对应系数矩阵之间的简单关系.其中,四阶张量求逆归结为对应的3×3系数矩阵求逆,它对二阶张量的变换则表现为该矩阵对3×1列阵的变换.最后,对这些变换关系应用于返回映射算法的迭代格式进行了相关讨论.  相似文献   

7.
The model of volumetric material growth is introduced in the framework of finite elasticity. The state variables include the deformations, temperature and the transplant matrix function. The wellposedness of the proposed model is shown. The existence of local in time classical solutions for the quasistatic deformations boundary value problem coupled with the energy balance and the growth evolution of the transplant is obtained. The new mathematical results for a broad class of growth models in mechanics and biology are presented with complete proofs.  相似文献   

8.
The nonlinear elastic response of a class of materials for which the deformation is subject to an internal material constraint described in experiments by James F. Bell on the finite deformation of a variety of metals is investigated. The purely kinematical consequences of the Bell constraint are discussed, and restrictions on the full range of compatible deformations are presented in geometrical terms. Then various forms of the constitutive equation relating the stress and stretch tensors for an isotropic elastic Bell material are presented. Inequalities on the mechanical response functions are introduced. The importance of these in applications is demonstrated in several examples throughout the paper.This paper focuses on homogeneous deformations. In a simple illustration of the theory, a generalized form of Bell's empirical rule for uniaxial loading is derived, and some peculiarities in the response under all-around compressive loading are discussed. General formulae for universal relations possible in an isotropic elastic, Bell constrained material are presented. A simple method for the determination of the left stretch tensor for essentially plane problems is illustrated in the solution of the problem of pure shear of a materially uniform rectangular block. A general formula which includes the empirical rule found in pure shear experiments by Bell is derived as a special case. The whole apparatus is then applied in the solution of the general problem of a homogeneous simple shear superimposed on a uniform triaxial stretch; and the great variety of results possible in an isotropic, elastic Bell material is illustrated. The problem of the finite torsion and extension of a thin-walled cylindrical tube is investigated. The results are shown to be consistent with Bell's data for which the rigid body rotation is found to be quite small compared with the gross deformation of the tube. Several universal formulas relating various kinds of stress components to the deformation independently of the material response functions are derived, including a universal rule relating the axial force to the torque.Constitutive equations for hyperelastic Bell materials are derived. The empirical work function studied by Bell is introduced; and a new constitutive equation is derived, which we name Bell's law. On the basis of this law, we then derive exactly Bell's parabolic laws for uniaxial loading and for pure shear. Also, form Bell's law, a simple constitutive equation relating Bell's deviatoric stress tensor to his finite deviatoric strain tensor is obtained. We thereby derive Bell's invariant parabolic law relating the deviatoric stress intensity to the corresponding strain intensity; and, finally, Bell's fundamental law for the work function expressed in these terms is recovered. This rule is the foundation for all of Bell's own theoretical study of the isotropic materials cataloged in his finite strain experiments on metals, all consistent with the internal material constraint studied here.  相似文献   

9.
The alignment of polymer chains is a well-known microstructural evolution effect due to straining of polymers. This has a drastic influence on the macroscopic properties of the initially isotropic material, such as a pronounced strength in the loading direction of stretched films. For modeling the effect of strain-induced anisotropy, a macroscopic constitutive model is developed in this paper. Within a thermodynamic framework, an additive decomposition of the logarithmic Hencky strain tensor into elastic and inelastic parts is used to formulate the constitutive equations. As a key idea, weighting functions are introduced to represent a strain-softening/hardening effect to account for induced anisotropy. These functions represent the ratio between the total strain rate (representing the actual loading direction) and a structural tensor (representing the stretched polymer chains). In this way, we introduce material parameters as a sum of weighted direction-related quantities. The numerical implementation of the resulting set of constitutive is used to identify material parameters based on experimental data, exhibiting strain-induced anisotropy. In the finite-element examples, we simulate the cold-forming of amorphous thermoplastic films below the glass transition temperature subjected to different re-loading directions.  相似文献   

10.
11.
12.
In this work, we derive a novel thermo-mechanical theory for growth and remodeling of biological materials in morphogenetic processes. This second gradient hyperelastic theory is the first attempt to describe both volumetric growth and mass transport phenomena in a single-phase continuum model, where both stress- and shape-dependent growth regulations can be investigated. The diffusion of biochemical species (e.g. morphogens, growth factors, migration signals) inside the material is driven by configurational forces, enforced in the balance equations and in the set of constitutive relations. Mass transport is found to depend both on first- and on second-order material connections, possibly withstanding a chemotactic behavior with respect to diffusing molecules. We find that the driving forces of mass diffusion can be written in terms of covariant material derivatives reflecting, in a purely geometrical manner, the presence of a (first-order) torsion and a (second-order) curvature. Thermodynamical arguments show that the Eshelby stress and hyperstress tensors drive the rearrangement of the first- and second-order material inhomogeneities, respectively. In particular, an evolution law is proposed for the first-order transplant, extending a well-known result for inelastic materials. Moreover, we define the first stress-driven evolution law of the second-order transplant in function of the completely material Eshelby hyperstress.The theory is applied to two biomechanical examples, showing how an Eshelbian coupling can coordinate volumetric growth, mass transport and internal stress state, both in physiological and pathological conditions. Finally, possible applications of the proposed model are discussed for studying the unknown regulation mechanisms in morphogenetic processes, as well as for optimizing scaffold architecture in regenerative medicine and tissue engineering.  相似文献   

13.
The paper deals with membrane reinforced bodies with the membrane treated as a two-dimensional surface with concentrated material properties. The bulk response of the matrix is treated separately in two cases: (a) as a coercive nonlinear material with convex stored energy function expressed in the small strain tensor, and (b) as a no-tension material (where the coercivity assumption is not satisfied). The membrane response is assumed to be nonlinear in the surface strain tensor. For the nonlinear bulk response in Case (a), the existence of states of minimum energy is proved. Under suitable growth conditions, the equilibrium states are proved to be exactly states of minimum energy. Then, under appropriate invertibility condition of the stress function, the principle of minimum complementary energy is proved for equilibrium states. For the no-tension material in Case (b), the principle of minimum complementary energy (in the absence of the invertibility assumption) is proved. Also, a theorem is proved stating that the total energy of the system is bounded from below if and only if the loads can be equilibrated by a stress field that is statically admissible and the bulk stress is negative semidefinite. Two examples are given. In the first, we consider the elastic semi-infinite plate with attached stiffener on the boundary (Melan’s problem). In the second example, we present a stress solution for a rectangular panel with membrane occupying the main diagonal plane.  相似文献   

14.
A general constitutive theory of the stress-modulated growth of biomaterials is presented with a particular accent given to pseudo-elastic soft living tissues. The governing equations of the mechanics of solids with a growing mass are revisited within the framework of finite deformation continuum thermodynamics. The multiplicative decomposition of the deformation gradient into its elastic and growth parts is employed to study the growth of isotropic, transversely isotropic, and orthotropic biomaterials. An explicit representation of the growth part of the deformation gradient is given in each case, which leads to an effective incremental formulation in the analysis of the stress-modulated growth process. The rectangular components of the instantaneous elastic moduli tensor are derived corresponding to selected forms of the elastic strain energy function. Physically appealing structures of the stress-dependent evolution equations for the growth induced stretch ratios are proposed.  相似文献   

15.
The exact formulae for the plastic and the elastic spin referred to the deformed configuration are derived, where the plastic spin is a function of the plastic strain rate and the elastic spin a function of the elastic strain rate. With these exact formulae we determine the macroscopic substructure spin that allows us to define the appropriate corotational rate for finite elastoplasticity.Plastic, elastic and substructure spin are considered and simplified for various sub-classes of restricted elastic-plastic strains. It is shown that for the special cases of rigid-plasticity and hypoelasticity the proposed corotational rate is identical with the Green-Naghdi rate, while the ZarembaJaumann rate yields a good approximation for moderately large strains.To compare our exact plastic spin formula with the constitutive assumption for the plastic spin introduced by Dafalias and others, we simplify our result for small elastic-moderate plastic strains and introduce a simplest evolution law for kinematic hardening leading to the Dafalias formula and to an exact determination of its unknown coefficient. It is also shown that contrary to statements in the literature the plastic spin is not zero for vanishing kinematic hardening.For isotropic-elastic material with induced plastic flow undergoing isotropic and kinematic hardening constitutive and evolution laws are proposed. Elastic and plastic Lagrangean and Eulerian logarithmic strain measures are introduced and their material time derivatives and corotational rates, respectively, are considered. Finally, the elastic-plastic tangent operator is derived.The presented theory is implemented in a solution algorithm and numerically applied to the simple shear problem for finite elastic-finite plastic strains as well as for sub-classes of restricted strains. The results are compared with those of the literature and with those obtained by using other corotational rates.  相似文献   

16.
In the present work a novel inelastic deformation caused internal dissipation inequality by isotropy is revealed. This inequality has the most concise form among a variety of internal dissipation inequalities, including the one widely used in constitutive characterization of isotropic finite strain elastoplasticity and viscoelasticiy. Further, the evolution term describing the difference between the rate of deformation tensor and the “principal rate” of the elastic logarithmic strain tensor is set, according to the standard practice by isotropy, to equal a rank-two isotropic tensor function of the corresponding branch stress, with the tensor function having an eigenspace identical to the eigenspace of the branch stress tensor. Through that a general form of evolution equation for the elastic logarithmic strain is formulated and some interesting and important results are derived. Namely, by isotropy the evolution of the elastic logarithmic strain tensor is embodied separately by the evolutions of its eigenvalues and eigenprojections, with the evolution of the eigenprojections driven by the rate of deformation tensor and the evolution of the eigenvalues connected to specific material behavior. It can be proved that by isotropy the evolution term in the present dissipation inequality stands for the essential form of the evolution term in the extensively applied dissipation inequality.  相似文献   

17.
In this paper the equations governing small amplitude motions in a rotating transversely isotropic initially stressed elastic solid are derived, both for compressible and incompressible linearly elastic materials. The equations are first applied to study the effects of initial stress and rotation on the speed of homogeneous plane waves propagating in a configuration with uniform initial stress. The general forms of the constitutive law, stresses and the elasticity tensor are derived within the finite deformation context and then summarized for the considered transversely isotropic material with initial stress in terms of invariants, following which they are specialized for linear elastic response and, for an incompressible material, to the case of plane strain, which involves considerable simplification. The equations for two-dimensional motions in the considered plane are then applied to the study of Rayleigh waves in a rotating half-space with the initial stress parallel to its boundary and the preferred direction of transverse isotropy either parallel to or normal to the boundary within the sagittal plane. The secular equation governing the wave speed is then derived for a general strain–energy function in the plane strain specialization, which involves only two material parameters. The results are illustrated graphically, first by showing how the wave speed depends on the material parameters and the rotation without specifying the constitutive law and, second, for a simple material model to highlight the effects of the rotation and initial stress on the surface wave speed.  相似文献   

18.
Theoretical model for deformability of brittle rock-like materials in the presence of an oriented damage of their internal structure is formulated and verified experimentally. This model is based on the assumption that non-linearity of the stress–strain curves of these materials is a result of irreversible process of oriented damage growth. It was also assumed that a material response, represented by the strain tensor, is a function of two tensorial variables: the stress tensor and the damage effect tensor that is responsible for the current state of the internal structure of the material. The explicit form of the respective non-linear stress–strain relations that account for the appropriate damage evolution equation was obtained by employing the theory of tensor function representations and by using the results of own experiments on damage growth. Such an oriented damage that grows in the material, described by the second order symmetric damage effect tensor, results in gradual development of the material anisotropy. The validity of the constitutive equations proposed was verified by using the available experimental results for concrete subjected to the plane state of stress. The relevant experimental data for sandstone and concrete subjected to tri-axial state of stress were also used.  相似文献   

19.
Stress—strain equations for an isotropic hyperelastic body are formulated. It is shown that the strain energy density whose gradient determines stresses can be defined as a function of two rather than three arguments, namely, strain–tensor invariants. In the case of small strains, the equations become relations of Hooke's law with two material constants, namely, shear modulus and bulk modulus.  相似文献   

20.
Nonlinear thermoelastic–viscoplastic constitutive equations for large deformations with isotropic and directional hardening, are incorporated into a micromechanical finite strain analysis. As a result of this analysis, which is based on the homogenization technique for periodic microstructures, a global thermoinelastic constitutive law is established that governs the overall response of multiphase materials under finite deformations. This constitutive law is expressed in terms of the instantaneous effective mechanical and thermal stress tangent tensors together with the instantaneous global inelastic stress tensor that represents the viscoplastic effects. Results for a thermoinelastic matrix reinforced by a hyperelastic compressible material are given that illustrate the response of fibrous and particulate composites to various types of loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号