首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates young students’ writing in connection to mathematical problem solving. Students’ written communication has traditionally been used by mathematics teachers in the assessment of students’ mathematical knowledge. This study rests on the notion that this writing represents a particular activity which requires a complex set of resources. In order to help students develop their writing, teachers need to have a thorough knowledge of mathematical writing and its distinctive features. The study aims to add to the body of knowledge about writing in school mathematics by investigating young students’ mathematical writing from a communicational, rather than mathematical, perspective. A basic inventory of the communicational choices, that are identifiable across a sample of 519 mathematical texts, produced by 9–12 year old students, is created. The texts have been analysed with multimodal discourse analysis, and the findings suggest diversity in students’ use of images, words, numerals, symbols and layout to organize their texts and to represent their problem-solving process along with an answer to the problem. The inventory and the indication that students have different ideas on how, what, for whom and why they should be writing, can be used by teachers to initiate discussions of what may constitute good communication.  相似文献   

2.
This paper brings together three themes: the fundamental theorem of the calculus (FTC), digital learning environments in which the FTC may be taught, and what we term “focuses of awareness.” The latter are derived from Radford’s theory of objectification: they are nodal activities through which students become progressively aware of key mathematical ideas structuring a mathematical concept. The research looked at 13 pairs of 17-year-old students who are not yet familiar with the concept of integration. Students were asked to consider possible connections between multiple-linked representations, including function graphs, accumulation function graphs, and tables of values of the accumulation function. Three rounds of analysis yielded nine focuses in the process of students’ learning the FTC with a digital tool as well as the relationship between them. In addition, the activities performed by the students to become aware of the focuses are described and theoretical and pedagogical implementations are also discussed.  相似文献   

3.
We explore the conjecture that engaging teachers with activities which feature mathematical practices from the past (history-focused tasks) and in today’s mathematics classrooms (mathtasks) can promote teachers’ problematizing of mathematics and its pedagogy. Here, we sample evidence of discursive shifts observed as twelve mathematics teachers engage with a set of problematizing activities (PA) – three rounds of history-focused and mathtask combinations – during a four–month postgraduate course. We trace how the commognitive conflicts orchestrated in the PA triggered changes in the teachers’ narratives about: mathematical objects (such as what a function is); how mathematical objects come to be (such as what led to the emergence of the function object); and, pedagogy (such as what value may lie in listening to students or in trialing innovative assessment practices). Our study explores a hitherto under-researched capacity of the commognitive framework to steer the design, evidence identification and impact evaluation of pedagogical interventions.  相似文献   

4.
Ornella Robutti 《ZDM》2010,42(1):77-89
In a teaching experiment carried out at the secondary school level, we observe the students’ processes in modelling activities, where the use of graphic calculators and connectivity software gives a common working space in the class. The study shows results in continuity with others emerged in the previous ICMEs and some new ones, and offers an analysis of the novelty of the software in introducing new ways to support learning communities in the construction of mathematical meanings. The study is conducted in a semiotic-cultural framework that considers the introduction and the evolution of signs, such as words, gestures and interaction with technologies, to understand how students construct mathematical meanings, working as a community of practice. The novelty of the results consists in the presence of two technologies for students: the “private” graphic calculators and the “public” screen of the connectivity software. Signs for the construction of knowledge are mediated by both of them, but the second does it in a social way, strongly supporting the work of the learning community.  相似文献   

5.
Many learning environments, computer-based or not, have been developed for either students or teachers alone to engage them in mathematical inquiry. While some headway has been made in both directions, few efforts have concentrated on creating learning environments that bring both teachers and students together in their teaching and learning. In the following paper, we propose game design as such a learning environment for students and teachers to build on and challenge their existing understandings of mathematics, engage in relevant and meaningful learning contexts, and develop connections among their mathematical ideas and their real world contexts. To examine the potential of this approach, we conducted and analyzed two studies: Study I focused on a team of four elementary school students designing games to teach fractions to younger students, Study II focused on teams of pre-service teachers engaged in the same task. We analyzed the various games designed by the different teams to understand how teachers and students conceptualize the task of creating virtual game learning environment for others, in which ways they integrate their understanding of fractions and develop notions about students' thinking in fractions, and how conceptual design tools can provide a common platform to develop meaningful fraction contexts. In our analysis, we found that most teachers and students, when left to their own devices, create instructional games to teach fractions that incorporate little of their knowledge. We found that when we provided teachers and students with conceptual design tools such as game screens and design directives that facilitated an integration of content and game context, the games as well as teachers' and students' thinking increased in their sophistication. In the discussion, we elaborate on how the design activities helped to integrate rarely used informal knowledge of students and teachers, how the conceptual design tools improved the instructional design process, and how students and teachers benefit in their mathematical inquiry from each others' perspectives. In the outlook, we discuss features for computational design learning environments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
This study illustrates how mathematical communication and learning are inherently multimodal and embodied; hence, sight-disabled students are also able to conceptualize visuospatial information and mathematical concepts through tactile and auditory activities. Adapting a perceptuomotor integration approach, the study shows that the lack of access to visual fields in an advanced mathematics course does not obstruct a blind student's ability to visualize, but transforms it. The goal of this study is not to compare the visually impaired student with non-visually impaired students to address the ‘differences’ in understanding; instead, I discuss the challenges that a blind student, named Anthony, has encountered and the ways that we tackled those problems. I also demonstrate how the proper and precisely crafted tactile materials empowered Anthony to learn mathematical functions.  相似文献   

7.
To make progress toward ambitious and equitable goals for students’ mathematical development, teachers need opportunities to develop specialized ways of knowing mathematics such as mathematical knowledge for teaching (MKT) for their work with students in the classroom. Professional learning communities (PLCs) are a common model used to support focused teacher collaboration and, in turn, foster teacher development, instructional improvement, and student outcomes. However, there is a lack of specificity in what is known about teachers’ work in PLCs and what teachers can gain from those experiences, despite broad claims of their benefit. We discuss an investigation of the work of secondary mathematics teachers in PLCs at two high schools to describe and explicate possible opportunities for teachers to develop the mathematical knowledge needed for the work of teaching and the ways in which these opportunities may be pursued or hindered. The findings show that, without pointed focus on mathematical content, opportunities to develop MKT can be rare, even among mathematics teachers. Two detailed images of teacher discussion are shared to highlight these claims. This article contributes to the ongoing discussion about the affordances and limitations of PLCs for mathematics teachers, considerations for their use, and how they can be supported.  相似文献   

8.
This paper adopts a multimodal approach to the latest generation of digital mathematics textbooks (print and online) to investigate how the design, content, and features facilitate the construction of mathematical knowledge for teaching and learning purposes. The sequential organization of the print version is compared to the interactive format of the online version which foregrounds explanations and important mathematical content while simultaneously ensuring a high level of connectivity and coherence across hierarchical layers of mathematical knowledge. For example, mathematical content in the online version is linked to definitions, theorems, examples and exercises that can be viewed in the original context in which the material was presented, and the content can also be linked to mathematics software. Significantly, the development process for the new generation of mathematics textbooks involves using a ‘design neutral’ markup language so that the books are simultaneously published as both print books and online books. In this development process, the structure of the chapters, sections, and subsections with their various elements are explicitly marked-up in the master document and preserved in the output format, giving rise to new methodologies for large-scale analysis of mathematics textbooks and student use of these books. For example, tracking methodologies and interactive visualizations of student viewings of online mathematical textbooks are identified as new research directions for investigating how students engage with mathematics textbooks within and across different educational contexts.  相似文献   

9.
This paper investigates how three children provided mathematical explanations whilst playing with a set of glass jars in a Swedish preschool. Using the idea of semiotic bundles combined with the work on multimodal interactions, the different semiotic resources used individually and in combinations by the children are described. Given that the children were developing their verbal fluency, it was not surprising to find that they also included physical arrangements of the jars and actions to support their explanations. Hence, to produce their explanations of different attributes such as thin and sameness, the children drew on each other’s gestures and actions with the jars. This research has implications for how the relationship between verbal language and gestures can be viewed in regard to young children’s explanations.  相似文献   

10.
Classrooms which involve students in mathematical discourse are becoming ever more prominent for the simple reason that they have been shown to support student learning and affinity for content. While support for outcomes has been shown, less is known about how or why such strategies benefit students. In this paper, we report on one such finding: namely that when students engage with another’s reasoning, as necessitated by interactive conversation, it supports their own conceptual growth and change. This qualitative analysis of 10 university students provides insight into what engaging with another’s reasoning entails and suggests that higher levels of engagement support higher levels of conceptual growth. We conclude with implications for instructional practice and future research.  相似文献   

11.
Heinz Steinbring 《ZDM》2008,40(2):303-316
The study tries to show one line of how the German didactical tradition has evolved in response to new theoretical ideas and new—empirical—research approaches in mathematics education. First, the classical mathematical didactics, notably ‘stoffdidaktik’ as one (besides other) specific German tradition are described. The critiques raised against ‘stoffdidaktik’ concepts [for example, forms of ‘progressive mathematisation’, ‘actively discovering learning processes’ and ‘guided reinvention’ (cf. Freudenthal, Wittmann)] changed the basic views on the roles that ‘mathematical knowledge’, ‘teacher’ and ‘student’ have to play in teaching–learning processes; this conceptual change was supported by empirical studies on the professional knowledge and activities of mathematics teachers [for example, empirical studies of teacher thinking (cf. Bromme)] and of students’ conceptions and misconceptions (for example, psychological research on students’ mathematical thinking). With the interpretative empirical research on everyday mathematical teaching–learning situations (for example, the work of the research group around Bauersfeld) a new research paradigm for mathematics education was constituted: the cultural system of mathematical interaction (for instance, in the classroom) between teacher and students.  相似文献   

12.
Since their appearance new technologies have raised many expectations about their potential for innovating teaching and learning practices; in particular any didactical software, such as a Dynamic Geometry System (DGS) or a Computer Algebra System (CAS), has been considered an innovative element suited to enhance mathematical learning and support teachers’ classroom practice. This paper shows how the teacher can exploit the potential of a DGS to overcome crucial difficulties in moving from an intuitive to a deductive approach to geometry. A specific intervention will be presented and discussed through examples drawn from a long-term teaching experiment carried out in the 9th and 10th grades of a scientific high school. Focusing on an episode through the lens of a semiotic analysis we will see how the teacher’s intervention develops, exploiting the semiotic potential offered by the DGS Cabri-Géomètre. The semiotic lens highlights specific patterns in the teacher’s action that make students’ personal meanings evolve towards the mathematical meanings that are the objective of the intervention.  相似文献   

13.
This paper suggests that mathematics teacher educators should listen carefully to what their students are saying. More specifically, it demonstrates how from one pre-teacher's non-traditional geometric representation of a unit fraction, a variety of learning environments that lead to the enrichment of mathematics for teaching can be developed. The paper shows how new knowledge may be generated through an attempt to validate an intuitive idea; in other words, how the quest for rigour may serve as a catalyst for the growth of mathematical concepts in the context of K-16 mathematics.  相似文献   

14.
Raymond Duval 《ZDM》2014,46(1):159-170
To situate the contributions of these research articles on visualization as an epistemological learning tool, we have employed mathematical, cognitive and functional criteria. Mathematical criteria refer to mathematical content, or more precisely the areas to which they belong: whole numbers (numeracy), algebra, calculus and geometry. They lead us to characterize the “tools” of visualization according to the number of dimensions of the diagrams used in experiments. From a cognitive point of view, visualization should not be confused with a visualization “tool,” which is often called “diagram” and is in fact a semiotic production. To understand how visualization springs from any diagram, we must resort to the notion of figural unity. It results methodologically in the two following criteria and questions: (1) In a given diagram, what are the figural units recognized by the students? (2) What are the mathematically relevant figural units that pupils should recognize? The analysis of difficulties of visualization in mathematical learning and the value of “tools” of visualization depend on the gap between the observations for these two questions. Visualization meets functions that can be quite different from both a cognitive and epistemological point of view. It can fulfill a help function by materializing mathematical relations or transformations in pictures or movements. This function is essential in the early numerical activities in which case the used diagrams are specifically iconic representations. Visualization can also fulfill a heuristic function for solving problems in which case the used diagrams such as graphs and geometrical figures are intrinsically mathematical and are used for the modeling of real problems. Most of the papers in this special issue concern the tools of visualization for whole numbers, their properties, and calculation algorithms. They show the semiotic complexity of classical diagrams assumed as obvious to students. In teaching experiments or case studies they explore new ways to introduce them and make use by students. But they lie within frameworks of a conceptual construction of numbers and meaning of calculation algorithms, which lead to underestimating the importance of the cognitive process specific to mathematical activity. The other papers concern the tools of mathematical visualization at higher levels of teaching. They are based on very simple tasks that develop the ability to see 3D objects by touch of 2D objects or use visual data to reason. They remain short of the crucial problem of graphs and geometrical figures as tools of visualization, or they go beyond that with their presupposition of students' ability to coordinate them with another register of semiotic representation, verbal or algebraic.  相似文献   

15.
Birgit Pepin 《ZDM》2011,43(4):535-546
Comparing English and Norwegian pupils’ attitude towards mathematics, in this article I develop a deeper understanding of the factors that may shape and influence ‘pupil attitude towards mathematics’, and argue for it as a socio-cultural construct embedded in and shaped by students’ environment and context in which they learn mathematics. The theoretical framework leans on work by Zan and Di Martino (The Montana Mathematics Enthusiast, Monograph 3, pp. 157–168, 2007) to elicit Norwegian and English pupils’ attitude of mathematics as they experience it in their respective environments. Whilst there were differences which could be seen to be accounted for by differently ‘figured’ environments, there are also many similarities. It was interesting to see that, albeit based on a small statistical sample, in both countries students had a positive attitude towards mathematics in year 7/8, which dropped in year 9, and increased again in years 10/11. This result could be explained and compared with other larger scale studies (e.g. Hodgen et al. in Proceedings of the British Society for Research into Learning Mathematics. 29(3), 2009). The analysis of pupils’ qualitative comments (and classroom observations) suggested seven factors that appeared to influence pupil attitude most, and these had ‘superficial’ commonalities, but the perceptions that appeared to underpin these mentions were different, and could be linked to the environments of learning mathematics in their respective classrooms. In summary, it is claimed that it is not enough to identify the factors that may shape and influence pupil attitude, but more importantly, to study how these are ‘lived’ by pupils, what meanings are made in classrooms and in different contexts, and how the factors interrelate and can be understood.  相似文献   

16.
Computational environments have the potential to provide new representational resources and new ways of supporting teaching and learning of mathematics. In this paper, we seek to characterize relationships between the representations offered by particular technologies and other representations commonly available in the classroom context, using the notion of ‘distance’. Distance between representations in different media may be epistemological, affecting the nature of the mathematical concepts available to students, or may be social, affecting pedagogic relationships in the classroom and the ease with which the technology may be adopted in particular classroom or national contexts. We illustrate these notions through examples taken from cross-experimentation of computational environments in national contexts different from those in which they were developed. Implications for the design and dissemination of computational environments for use in learning mathematics are discussed.  相似文献   

17.
Allan Graham Duncan 《ZDM》2010,42(7):763-774
Do teachers find that the use of dynamically linked multiple representations enhances their students’ relational understanding of the mathematics involved in their lessons and what evidence do they provide to support their findings? Throughout session 2008–2009, this empirical research project involved six Scottish secondary schools, two mathematics teachers from each school and students from different ages and stages. Teachers used TI-Nspire PC software and students the TI-Nspire handheld technology. This technology is specifically designed to allow dynamically linked multiple representations of mathematical concepts such that pupils can observe links between cause and effect in different representations such as dynamic geometry, graphs, lists and spreadsheets. The teachers were convinced that the use of multiple representations of mathematical concepts enhanced their students’ relational understanding of these concepts, provided evidence to support their argument and described changes in their classroom pedagogy.  相似文献   

18.
Ole Skovsmose 《ZDM》2007,39(3):215-224
  相似文献   

19.
Including opportunities for students to experience uncertainty in solving mathematical tasks can prompt learners to resolve the uncertainty, leading to mathematical understanding. In this article, we examine how preservice secondary mathematics teachers’ thinking about a trigonometric relationship was impacted by a series of tasks that prompted uncertainty. Using dynamic geometry software, we asked preservice teachers to compare angle measures of lines on a coordinate grid to their slope values, beginning by investigating lines whose angle measures were in a near-linear relationship to their slopes. After encountering and resolving the uncertainty of the exact relationship between the values, preservice teachers connected what they learned to the tangent relationship and demonstrated new ways of thinking that entail quantitative and covariational reasoning about this trigonometric relationship. We argue that strategically using uncertainty can be an effective way of promoting preservice teachers’ reasoning about the tangent relationship.  相似文献   

20.
Gerald A. Goldin 《ZDM》2004,36(2):56-60
It has been suggested that activities in discrete mathematics allow a kind of new beginning for students and teachers. Students who have been “turned off” by traditional school mathematics, and teachers who have long ago routinized their instruction, can find in the domain of discrete mathematics opportunities for mathematical discovery and interesting, nonroutine problem solving. Sometimes formerly low-achieving students demonstrate mathematical abilities their teachers did not know they had. To take maximum advantage of these possibilities, it is important to know what kinds of thinking during problem solving can be naturally evoked by discrete mathematical situations—so that in developing a curriculum, the objectives can include pathways to desired mathematical reasoning processes. This article discusses some of these ways of thinking, with special attention to the idea of “modeling the general on the particular.” Some comments are also offered about students' possible affective pathways and structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号