首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Allan Graham Duncan 《ZDM》2010,42(7):763-774
Do teachers find that the use of dynamically linked multiple representations enhances their students’ relational understanding of the mathematics involved in their lessons and what evidence do they provide to support their findings? Throughout session 2008–2009, this empirical research project involved six Scottish secondary schools, two mathematics teachers from each school and students from different ages and stages. Teachers used TI-Nspire PC software and students the TI-Nspire handheld technology. This technology is specifically designed to allow dynamically linked multiple representations of mathematical concepts such that pupils can observe links between cause and effect in different representations such as dynamic geometry, graphs, lists and spreadsheets. The teachers were convinced that the use of multiple representations of mathematical concepts enhanced their students’ relational understanding of these concepts, provided evidence to support their argument and described changes in their classroom pedagogy.  相似文献   

3.
4.
Marcelo C. Borba 《ZDM》2012,44(6):801-814
This paper begins by situating online mathematics education in Brazil within the context of research on digital technology over the past 25?years. I argue that Brazilian research on technology in mathematics education can be divided into four phases, and then present an example that ??blends?? aspects of the second and third phases. Phase two can be characterized by research with software designed to address traditional mathematics topics, such as functions, while the third phase is characterized by online courses. The data presented show creative solutions for a problem designed for collectives of humans-with-function-software. The paper is analyzed from a perspective that emphasizes the role of different technologies as teachers and professors collaborate to produce knowledge about the use of mathematical software in regular face-to-face classrooms. A model of online education is presented. Finally, the paper discusses how technology may change collaboration and teaching approaches in continuing education, as it allows for greater integration of online learning with teachers?? classroom activities in schools. In this case, the online platform plays an active role in the learning collective composed of humans-with-media.  相似文献   

5.
吴华  魏佳 《大学数学》2008,24(3):28-32
信息技术与大学数学课程整合正成为当前我国信息技术教育乃至整个教育信息化进程中的一个热点问题,探讨其整合的方式及理论基础是非常必要的.本文首先结合大学数学案例探讨了整合的三种方式:动态的课堂演示型、单机的数学实验型和全交互的网络教学型,其次探讨了整合所依据的四种理论:传播理论、建构主义理论、教学设计理论和系统理论,最后提出了自己对信息技术与大学数学课程整合的一些思考.  相似文献   

6.
The purpose of the current study was to evaluate the impact of co‐taught integrated STEM methods instruction on preservice elementary teachers’ self‐efficacy for teaching science and mathematics within an integrated STEM framework. Two instructional methods courses (Elementary Mathematics Methods and Elementary Science Methods) were redesigned to include STEM integration components, including STEM model lessons co‐taught by a mathematics and science educator, as well as a special education colleague. Quantitative data were gathered at three time points in the semester (beginning, middle, and end) from 55 preservice teachers examining teacher self‐efficacy for integrated STEM teaching. Qualitative data were gathered from a purposeful sample of seven preservice teachers to further understand preservice teachers’ perceptions on delivering integrated STEM instruction in an elementary setting. Quantitative results showed a significant increase in teacher self‐efficacy across all three time points. Item‐level analysis revealed that self‐efficacy for tasks involving engineering and assessment (both formative and summative) were low across time points, while self‐efficacy for tasks involving technology and flexibility were consistently high. Qualitative results revealed that the preservice teachers did not feel adequately prepared by university‐level science and mathematics courses, in terms of content knowledge and integration of science and mathematics for elementary students.  相似文献   

7.
This paper focuses on high school mathematics teachers and what they do when they use digital technology in their lessons. It is essentially a discursive paper but it uses data from a project on teachers using technology to illustrate points. The main aim of the paper is to present an holistic account of factors influencing teachers’ practice. A secondary aim is to present the integration of technology into lessons as a complex issue. Saxe’s four parameter model of goal-linked practice is employed to show how different dimensions of teachers’ activities interrelate in this complex undertaking. The paper ends with a consideration of approaches related to Saxe’s model.  相似文献   

8.
The rhetoric surrounding integration of mathematics and science abounds. Professional organizations’ standards and recommendations for reform in mathematics and science education each point out the need to make connections among various disciplines. However, some remain unconvinced, citing a lack of research supporting the assertion that integration improves student achievement. This article examines the current situation, discusses the growing body of related research, and examines the implementation issues related to integrated curriculum projects. The conclusion calls for mathematics and science educators to work collaboratively to address implementation issues surrounding reform of any kind and to explore further the possibilities of integration.  相似文献   

9.
A number of national science and mathematics education professional associations, and recently technology education associations, are united in their support for the integration of science and mathematics teaching and learning. The purpose of this historical analysis is two‐fold: (a) to survey the nature and number of documents related to integrated science and mathematics education published from 1901 through 2001 and (b) to compare the nature and number of integrated science and mathematics documents published from 1990 through 2001 to the previous 89 years (1901–1989). Based upon this historical analysis, three conclusions have emerged. First, national and state standards in science and mathematics education have resulted in greater attention to integrated science and mathematics education, particularly in the area of teacher education, as evidenced by the proliferation of documents on this topic published from 1901–2001. Second, the historical comparison between the time periods of 1901–1989 versus 1990–2001 reveals a grade‐level shift in integrated instructional documents. Middle school science continues to be highlighted in integrated instructional documents, but surprisingly, a greater emphasis upon secondary mathematics and science education is apparent in the integration literature published from 1990–2001. Third, although several theoretical integration models have been posited in the literature published from 1990–2001, more empirical research grounded in these theoretical models is clearly needed in the 21st century.  相似文献   

10.
11.
12.
13.
14.
Zsolt Lavicza 《ZDM》2010,42(1):105-119
The emergence of new computing technologies in the second half of the twentieth century brought about new potentials and promised the rapid transformation of the teaching and learning of mathematics. However, despite the vast investments in technology resources for schools and universities, the realities of schooling and the complexities of technology-equipped environments resulted in a much slower integration process than was predicted in the 1980s. Hence researchers, together with teachers and mathematicians, began examining and reflecting on various aspects of technology-assisted teaching and learning and on the causes of slow technology integration. Studies highlighted that as technology becomes increasingly available in schools, teachers’ beliefs and conceptions about technology use in teaching are key factors for understanding the slowness of technology integration. In this paper, I outline the shift of research focus from learning and technology environment-related issues to teachers’ beliefs and conceptions. In addition, I highlight that over the past two decades a considerable imbalance has developed in favour of school-level research against university-level research. However, several changes in universities, such as students declining mathematical preparedness and demands from other sciences and employers, necessitate closer attention to university-level research. Thus, I outline some results of my study that aimed to reflect on the paucity of research and examined the current extend of technology use, particularly Computer Algebra Systems (CAS) at universities, mathematicians’ views about the role of CAS in tertiary mathematics teaching, and the factors influencing technology integration. I argue that due to mathematicians’ extensive use of CAS in their research and teaching, documenting their teaching practices and carrying out research at this level would not only be beneficial at the university level but also contribute to our understanding of technology integration at all levels.  相似文献   

15.
Marcelo C. Borba 《ZDM》2009,41(4):453-465
Research on the influence of multiple representations in mathematics education gained new momentum when personal computers and software started to become available in the mid-1980s. It became much easier for students who were not fond of algebraic representations to work with concepts such as function using graphs or tables. Research on how students use such software showed that they shaped the tools to their own needs, resulting in an intershaping relationship in which tools shape the way students know at the same time the students shape the tools and influence the design of the next generation of tools. This kind of research led to the theoretical perspective presented in this paper: knowledge is constructed by collectives of humans-with-media. In this paper, I will discuss how media have shaped the notions of problem and knowledge, and a parallel will be developed between the way that software has brought new possibilities to mathematics education and the changes that the Internet may bring to mathematics education. This paper is, therefore, a discussion about the future of mathematics education. Potential scenarios for the future of mathematics education, if the Internet becomes accepted in the classroom, will be discussed.  相似文献   

16.
The purpose of this study is to provide an in‐depth analysis of attitudes and perceptions related to the integration of mathematics, science, and technology education of preservice teachers preparing to teach STEM disciplines. Longitudinal data by individual cohort and across 7 years of the Integrated Mathematics, Science, and Technology (MSAT) Program are reported, analyzed, and interpreted to help design and improve preservice teacher education programs and improve teaching and learning in STEM classrooms. Results of quantitative analyses indicate that there was generally no change in preservice teacher attitudes and perceptions related to the value of the integration of mathematics, science, and technology education—they clearly valued integration at the onset and at the completion of the program. However, there was a significant change in preservice teacher attitudes and perceptions related to integration feasibility in terms of inefficiency and difficulty. Implications for teacher education programs include: (a) more exposure to concepts, processes, and skills in STEM that are similar, analogous, complementary, or synergistic; (b) familiarity with instructional strategies and access to resources; (c) deeper understanding of content across STEM; and (d) strategies for collaboration and team work to make integrated instruction time more efficient and less difficult to manage.  相似文献   

17.
Bob Perry 《ZDM》2007,39(4):271-286
Thirteen Australian teachers who had been nominated by their professional mathematics teachers’ associations as excellent teachers of elementary school mathematics were interviewed on their beliefs about mathematics, mathematics learning and mathematics teaching. In particular, they were asked to discuss the characteristics of effective teachers of mathematics and excellent mathematics lessons. In spite of their differences in location, experience and teacher education, the teachers displayed a lot of consistency in their responses and in their lists of characteristics. While this group of teachers cannot be claimed to be representative of Australian teachers, they have provided a snapshot of what is regarded as effectiveness in mathematics education in Australian elementary schools.  相似文献   

18.
Traditional models of gender equity incorporating deficit frameworks and creating norms based on male experiences have been challenged by models emphasizing the social construction of gender and positing that women may come to know things in different ways from men. This paper draws on the latter form of feminist theory while treating gender equity in mathematics as intimately interconnected with equity issues by social class and ethnicity. I integrate feminist and social justice literature in mathematics education and argue that to secure a transformative, sustainable impact on equity, we must treat mathematics as an integral component of a larger system producing educated citizens. I argue the need for a mathematics education with tri-fold support for mathematical literacy, critical literacy, and community literacy. Respectively, emphases are on mathematics, social critique, and community relations and actions. Currently, the integration of these three literacies is extremely limited in mathematics.  相似文献   

19.
The National Council of Teachers of Mathematics has proposed a broad core mathematics curriculum for all high school students. One emphasis in that core is on “mathematical connections” both among mathematical topics and between mathematics and other disciplines of study. It is suggested that mathematics should become a more integrated part of all students' high school education. In this article, working definitions for the terms curriculum, interdisciplinary, and integrated and a model of three categories of curriculum design based on the work of Harold Alberty are developed. This article then examines how a “connected” mathematics core curriculum might be situated within the different categories of curriculum organization. Examples from research on interdisciplinary education in high schools are presented. Issues arising from this study suggest the need for a greater emphasis on building and using models of curriculum integration both to frame and to give impetus to the work being done by teachers and administrators.  相似文献   

20.
Verónica Hoyos 《ZDM》2012,44(6):775-786
This paper reviews existing research on how in-service high school teachers have learned about, worked on or thought about the incorporation of mathematics technology into their teaching practices. The paper reviews different scenarios of instruction issuing from important research related to teacher professional development. Specifically, we will deal with contributions to online in-service mathematics teacher education that refer to the use of digital technologies in classroom teaching practices. The different articles reviewed belong to a range of teams of researchers from several universities and countries, and who have implemented distinct online education approaches. That work has allowed the gaining of knowledge on the specificities of using Web 2.0 tools for mathematics professional development (MPD), the function that online teacher interaction has in teacher learning, and the actual classroom conditions in which mathematics technology is incorporated into instructional practice. This paper describes and discusses the design features of those approaches emphasizing the main concepts and their underpinning theoretical frames, noting important design elements, and specific results. Finally, the paper discusses how some of these research findings are connected with emergent issues in the field of MPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号