首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graft copolymerization of konjac glucomannan (KGM) and acrylic acid was induced by 60Co-γ irradiation at room temperature. The effects of radiation dose and monomer-to-KGM ratio on grafting yield and equilibrium water absorbency were investigated. The KGM-based superabsorbent polymer (KSAP) could absorb water 625 times of its dry weight when the radiation dose was 5.0 kGy and monomer-to-KGM ratio was 5. The structure of KSAP was characterized by FTIR, XRD, and SEM. KSAP showed a lower crystallinity than KGM. The porous microstructure of KSAP was revealed by SEM. The diffusion mechanism of water in the hydrogel is consistent with the anomalous diffusion model. Cations, especially multivalent cations, greatly reduced water absorbency of KSAP. Rising temperature, acidic or basic solutions are not favorable for the swelling of KSAP.  相似文献   

2.
This article deals with the characterization of blend films obtained by mixing poly(vinyl alcohol) (PVA) and konjac glucomannan (KGM) in aqueous solution. The DTA curves of PVA/KGM blend films showed overlapping of the main thermal transitions characteristic of the individual polymers. The exothermic peak at 312°C, which resulted from the thermal degradation of the KGM, shifted slightly to a higher temperature at low PVA content (≤20 wt%). The weight-retention properties of the blend films indicated that thermal stability of the blend films were better than pure KGM film at PVA content below 20 wt%. The crystallinities, tensile strength, and elongation at break of the films increased with the PVA content, and reached the maximum values at 20 wt% PVA, then decreased. Changes in the carbonyl stretching band of KGM and hydroxyl stretching regions of KGM and PVA were detected by FTIR analysis. Those are attributable to the existence of a certain degree of inteaction between KGM and PVA, and resulted from intermolecular hydrogen bonds. Phase separation phenomena were observed by examining the surface of the blend films by SEM.  相似文献   

3.
In the aim of producing fully organic bionanocomposite based on poly(lactide) (PLA), cellulose nanowhiskers (CNW) were grafted by n-octadecyl-isocyanate (CNW-ICN) applying an in situ surface grafting method. The compatibilizing effect of the long aliphatic grafted chain was investigated by thermal, mechanical and permeability analysis of solvent cast nanocomposite films. The grafted CNW-ICN could be successfully dispersed in the polymer matrix. The gained compatibility brought about a nucleating effect, decreasing the half time of isothermal crystallization from 25 min for the neat PLA to 8.4 min for the nanocomposite including 2.5 wt% CNW-ICN, e.g., tensile strength was improved by 10 MPa for the same 2.5 wt% CNW-ICN/PLA composite. Mechanical reinforcement was also effective in the rubbery state of PLA and increased the tensile modulus of the rubbery plateau providing thereby thermal resistance to the polymer. Oxygen barrier properties did not change significantly upon the inclusion of CNW-ICN, even when the quantity of CNW-ICN was increased to 15 wt%. More interestingly, the water vapour permeability of the CNW-ICN nanocomposite was always lower than the one of ungrafted CNW composites, which led to the conclusion that the hydrophobic surface graft and improved compatibility could counteract the effect of inclusion of hydrophilic structures in the matrix on water vapour transport. In conclusion, the surface grafting of CNW with isocyanates might be an easy and versatile tool for designing fully organic bionanocomposites with tailored properties.  相似文献   

4.
Xyloglucan and pectin are major non-cellulosic components of most primary plant cell walls. It is believed that xyloglucan and perhaps pectin are functioning as tethers between cellulose microfibrils in the cell walls. In order to understand the role of xyloglucan and pectin in cell wall mechanical properties, model cell wall composites created using Gluconacetobacter xylinus cellulose or cellulose nanowhiskers (CNWs) derived there from with different amounts of xyloglucan and/or pectin have been prepared and measured under extension conditions. Compared with pure CNW films, CNW composites with lower amounts of xyloglucan or pectin did not show significant differences in mechanical behavior. Only when the additives were as high as 60 %, the films exhibited a slightly lower Young’s modulus. However, when cultured with xyloglucan or pectin, the bacterial cellulose (BC) composites produced by G. xylinus showed much lower modulus compared with that of the pure BC films. Xyloglucan was able to further reduce the modulus and extensibility of the film compared to that of pectin. It is proposed that surface coating or tethering of xyloglucan or pectin of cellulose microfibrils does not alone affect the mechanical properties of cell wall materials. The implication from this work is that xyloglucan or pectin alters the mechanical properties of cellulose networks during rather than after the cellulose biosynthesis process, which impacts the nature of the connection between these compounds.  相似文献   

5.
Two future wood biorefinery products, spruce galactoglucomannans (GGM) and microfibrillated spruce wood cellulose (MFC), were mixed to form composite films. The films were plasticized with different amounts of glycerol, and the preparation of films was successful even with low glycerol contents. The film properties were studied using optical microscopy and scanning electron microscopy, x-ray diffraction, water sorption, dielectric analysis, moisture scanning dynamic mechanical analysis, and tensile testing. The addition of MFC clearly affected the properties of the films by decreasing the moisture uptake and increasing the relative humidity of softening of the films and by increasing the glass transition temperature, tensile strength, and Young’s modulus of the films. The effect of MFC addition on the tensile properties of films was emphasized at low glycerol contents. The addition of MFC did not affect the degree of crystallinity of GGM in the films, which was between 20 and 25%. MFC can be efficiently used as reinforcement of GGM films to form wood-based composite materials and to prepare GGM-based films and coatings with low plasticizer content.  相似文献   

6.
为了研制药物缓释效果优良的薄膜材料,利用静电纺丝设备研制不同比重的魔芋葡甘露聚糖/聚乙烯醇纳米纤维膜,并通过扫描电镜、傅里叶变换红外光谱和示差扫描量热法表征纳米纤维膜的结构和性能,结合体外实验和数学模型研究其缓释行为.结果显示当魔芋葡甘露聚糖含量占纳米纤维膜总质量约76%时,纳米纤维膜中微纤丝粗细最均匀且结点较少,纳米纤维膜中魔芋葡甘聚糖和聚乙烯醇之间存在明显的相互作用,含有5-氨基水杨酸的纳米纤维膜在pH=7.4 PBS磷酸盐缓冲液中25 h的累积释放量大约为45%,显示出良好的药物缓释效果,其缓释行为与Higuchi模型具有较高的拟合度.研究表明利用静电纺丝设备研制的魔芋葡甘聚糖/聚乙烯醇纳米纤维膜可以为药物缓释载体的开发提供理论依据.  相似文献   

7.
Polylactic acid (PLA) nanocomposites were prepared using cellulose nanowhiskers (CNW) as a reinforcing element in order to asses the value of this filler to reduce the gas and vapour permeability of the biopolyester matrix. The nanocomposites were prepared by incorporating 1, 2, 3 and 5 wt% of the CNW into the PLA matrix by a chloroform solution casting method. The morphology, thermal and mechanical behaviour and permeability of the films were investigated. The CNW prepared by acid hydrolysis of highly purified alpha cellulose microfibers, resulted in nanofibers of 60–160 nm in length and of 10–20 nm in thickness. The results indicated that the nanofiller was well dispersed in the PLA matrix, did not impair the thermal stability of this but induced the formation of some crystallinity, most likely transcrystallinity. CNW prepared by freeze drying exhibited in the nanocomposites better morphology and properties than their solvent exchanged counterparts. Interestingly, the water permeability of nanocomposites of PLA decreased with the addition of CNW prepared by freeze drying by up to 82% and the oxygen permeability by up to 90%. Optimum barrier enhancement was found for composites containing loadings of CNW below 3 wt%. Typical modelling of barrier and mechanical properties failed to describe the behaviour of the composites and appropriate discussion regarding this aspect was also carried out. From the results, CNW exhibit novel significant potential in coatings, membranes and food agrobased packaging applications.  相似文献   

8.
Cellulose nanowhiskers (CNW) extracted from plant fibers exhibit remarkable properties that make them suitable for use in the development of bionanocomposites. CNW have demonstrated the capability to enhance the properties of a polymer matrix at low filler loading. In this study, poly (lactic acid) (PLA) bionanocomposites were prepared using the solution casting technique, by incorporating the PLA with the CNW obtained from an oil palm empty fruit bunch (OPEFB). Fourier transform infrared spectroscopy showed no significant changes in the PLA peak positions, which indicates that incorporating the CNW into the PLA did not result in any significant changes in the chemical structure of the PLA. Thermogravimetric analysis, on the other hand, revealed that the bionanocomposites (PLA-CNW) had better thermal stability than the pure PLA. The tensile strength of PLA-CNW increased by 84% with the addition of 3 parts of CNW per hundred resins (phr), and decreased thereafter. Moreover, a linear relationship was observed between the Young's modulus and CNW loading. Elongation at break, however, decreased with the addition of 1-phr CNW, and remained constant with further addition. Transmission electron microscopy revealed that agglomeration of CNW occurred at 5-phr loading, consistent with the tensile strength results. Overall, the CNW obtained from OPEFB can enhance the tensile and the thermal properties of bionanocomposites.  相似文献   

9.
In the present work, poly(propylene glycol)(PPG) was block copolymerized to form polylactide-poly(propylene glycol)-polylactide(PL-PPG-PL) triblock copolymers for preparing flexible stereocomplex PL(sc PL) blend films. The sc PL blend films were prepared by solution blending of poly(L-lactide)-PPG-poly(L-lactide)(PLL-PPG-PLL) and poly(D-lactide)-PPG-poly(D-lactide)(PDL-PPG-PDL) triblock copolymers before film casting. The influences of PL end-block lengths(2×10~4 and 4×10~4 g/mol) and blend ratios(75/25, 50/50 and 25/75 W/W) on the stereocomplexation and mechanical properties of the blend films were evaluated. From DSC and WAXD results, the 50/50 blend films had complete stereocomplexation. Phase separation between the sc PL and PPG phases was not observed from their SEM images. The tensile stress and elongation at break increased with the sterecomplex crystallinities and PL end-block lengths. The PPG middle-blocks enhanced elongation at break of the sc PL films. The results showed that the PL-PPG-PL triblock structures did not affect stereocomplexation of the PLL/PDL block blending. In conclusion, the phase compatibility and flexibility of the sc PL films were improved by PPG block copolymerization.  相似文献   

10.
Blend films from cellulose and konjac glucomannan (KGM) in room temperature ionic liquid 1‐allyl‐3‐methylimidazolium chloride were satisfactorily prepared by coagulating with water. The composition of the blend films was gravimetrically analyzed, and the compatibility of the two natural polymers was characterized by Fourier transform infrared spectroscopy and wide‐angle X‐ray diffraction. The results indicate good compatibility and strong interactions between cellulose and KGM, resulting in almost no loss of the water‐soluble KGM from the blend films even after the water coagulating and washing. However, microstructure analyses portrayed phase separations in the blend films, namely, egg‐like new phase particles were embedded in a continuous matrix base (MB). Phase diagram analysis and differential scanning calorimetry of the phase inversion coagulation process suggest that relative low molecular mass part of both cellulose and KGM formed the continuous MB, whereas the egg‐like new phase particles were super patterns of relative high molecular mass of both polymers, which played an important role in strengthening the blend material. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1686–1694, 2009  相似文献   

11.
This study investigated the effect of sweet potato starch (SPS) and konjac glucomannan (KGM) on the textural, color, sensory, rheological properties, and microstructures of plant-based pork rinds. Plant-based gels were prepared using mixtures of soy protein isolate (SPI), soy oil, and NaHCO3 supplemented with different SPS and KGM concentrations. The texture profile analysis (TPA) results indicated that the hardness, cohesiveness, and chewiness of the samples improved significantly after appropriate SPS and KGM addition. The results obtained via a colorimeter showed no significant differences were found in lightness (L*) between the samples and natural pork rinds after adjusting the SPS and KGM concentrations. Furthermore, the rheological results showed that adding SPS and KGM increased both the storage modulus (G’) and loss modulus (G’’), indicating a firmer gel structure. The images obtained via scanning electron microscopy (SEM) showed that the SPS and KGM contributed to the formation of a more compact gel structure. A mathematical model allowed for a more objective sensory evaluation, with the 40% SPS samples and the 0.4% KGM samples being considered the most similar to natural pork rinds, which provided a comparable texture, appearance, and mouthfeel. This study proposed a possible schematic model for the gelling mechanism of plant-based pork rinds: the three-dimensional network structures of the samples may result from the interaction between SPS, SPI, and soybean oil, while the addition of KGM and NaHCO3 enabled a more stable gel structure.  相似文献   

12.
To know the effects of irradiation on the konjac glucomannan (KGM) molecular chain membrane, KGM membrane solution was treated with the irradiation dose of 0-20 kGy in this study, and the structure and properties of KGM membrane were analyzed with Infrared spectrum, Raman spectrum, X-ray, SEM scanning and so on. The results revealed that the effects of different irradiation doses on the KGM molecular chain structure were different. Higher irradiation dose (20 kGy) resulted in partial damage against KGM membrane crystal structure, and there was no obvious change for the amorphous structure; with membrane property test, the tensile strength of KGM membrane gradually increased with the increase of irradiation dose and its elongation at break reduced, but these changes were not significant, WVP value reduced; with SEM, the membrane surface treated with irradiation was smoother even than the membrane without treatment. In addition, when increasing the irradiation dose, membrane surface became more even, and arrangement was more orderly and compact. Irradiation modification could effectively improve the KGM membrane properties, and it is an ideal modification method.  相似文献   

13.
Polysaccharides are biorenewable and biodegradable starting materials for the development of functional materials. The synthesis of a monofunctional macroinitiator for single electron transfer‐living radical polymerization was successfully developed from a wood polysaccharide‐O‐acetyl galactoglucomannan (GGM) using a beforehand synthesized amino‐functional α‐bromoisobutyryl derivative applying reductive amination. The GGM macroinitiator was employed to initiate a controlled radical polymerization of [2‐(methacryloyloxy)ethyl]trimethylammonium chloride (MeDMA), methyl methacrylate (MMA), and N‐isopropylacrylamide (NIPAM) using Cu0/Me6‐Tren as a catalyst. The either charged or amphiphilic GGM‐b‐copolymers with different chain lengths of the synthetic block were successfully synthesized without prior hydrophobization of the GGM chain and dimethyl sulfoxide (DMSO) or DMSO/water mixtures were used as solvents. This novel synthetic approach may find untapped potentials particularly for the development of polysaccharide‐based amphiphilic additives for cosmetics or paints and for the design of novel temperature or pH responsive polymers with such potential applications as in drug delivery systems or in biocomposites. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5100–5110  相似文献   

14.
In the present work, poly(propylene glycol) (PPG) was block copolymerized to form polylactide-poly(propylene glycol)-polylactide (PL-PPG-PL) triblock copolymers for preparing flexible stereocomplex PL (scPL) blend films. The scPL blend films were prepared by solution blending of poly(L-lactide)-PPG-poly(L-lactide) (PLL-PPG-PLL) and poly(D-lactide)- PPG-poly(D-lactide) (PDL-PPG-PDL) triblock copolymers before film casting. The influences of PL end-block lengths (2 × 104 and 4 × 104 g/mol) and blend ratios (75/25, 50/50 and 25/75 W/W) on the stereocomplexation and mechanical properties of the blend films were evaluated. From DSC and WAXD results, the 50/50 blend films had complete stereocomplexation. Phase separation between the scPL and PPG phases was not observed from their SEM images. The tensile stress and elongation at break increased with the sterecomplex crystallinities and PL end-block lengths. The PPG middle-blocks enhanced elongation at break of the scPL films. The results showed that the PL-PPG-PL triblock structures did not affect stereocomplexation of the PLL/PDL block blending. In conclusion, the phase compatibility and flexibility of the scPL films were improved by PPG block copolymerization.  相似文献   

15.
Galactoglucomannan (GGM) is a polysaccharide mainly consisting of mannose, glucose, and galactose. GGM is the most abundant hemicellulose in the Norway spruce (Picea abies), but is also found in the cell wall of flax seeds, tobacco plants, and kiwifruit. Although several applications for GGM polysaccharides have been developed in pulp and paper manufacturing and the food and medical industries, attempts to synthesize and study distinct fragments of this polysaccharide have not been reported previously. Herein, the synthesis of one of the core trisaccharide units of GGM together with a less‐abundant tetrasaccharide fragment is described. In addition, detailed NMR spectroscopic characterization of the model compounds, comparison of the spectral data with natural GGM, investigation of the acetyl‐group migration phenomena that takes place in the polysaccharide by using small model compounds, and a binding study between the tetrasaccharide model fragment and a galactose‐binding protein (the toxin viscumin) are reported.  相似文献   

16.
The paper focuses on the integration in hybrid architectures of plasma produced nanomaterials. The routes for the fabrication of layered structures consisting of carbon nanowalls on carbon nanotubes (CNW/CNT), of carbon nanotubes on carbon nanowalls (CNT/CNW), and nanoparticles on carbon nanowalls (NP/CNW) are presented. The morphology and structure of the hybrid architectures were investigated by electron microscopy techniques. We show that higher substrate temperature promotes the formation of high mass hydrogenated carbon clusters which favors the dominance of CNW growth over that of CNT. On this basis, a procedure of obtaining CNT/CNW architectures by switching the growth regime via substrate temperature is described. The specific limitations or advantages concerning the control or the properties of the obtained architectures are discussed.  相似文献   

17.
Carbon nanowall (CNW) and carbon nanotube (CNT) were prepared as anode materials of lithium-ion batteries. To fabricate a lithium-ion battery, copper (Cu) foil was cleaned using an ultrasonic cleaner in a solvent such as trichloroethylene (TCE) and used as a substrate. CNW and CNT were synthesized on Cu foil using plasma-enhanced chemical vapor deposition (PECVD) and water dispersion, respectively. CNW and CNT were used as anode materials for the lithium-ion battery, while lithium hexafluorophosphate (LiPF6) was used as an electrolyte to fabricate another lithium-ion battery. For the structural analysis of CNW and CNT, field emission scanning electron microscope (FE-SEM) and Raman spectroscopy analysis were performed. The Raman analysis showed that the carbon nanotube in composite material can compensate for the defects of the carbon nanowall. Cyclic voltammetry (CV) was employed for the electrochemical properties of lithium-ion batteries, fabricated by CNW and CNT, respectively. The specific capacity of CNW and CNT were calculated as 62.4 mAh/g and 49.54 mAh/g. The composite material with CNW and CNT having a specific capacity measured at 64.94 mAh/g, delivered the optimal performance.  相似文献   

18.
Studies on Hydrogen Bonding Network Structures of Konjac Glucomannan   总被引:6,自引:2,他引:4  
In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent with those from simulation. The results show that the hydrogen bonding network structures of KGM are stable and the key linking points of hydrogen bonding network are at the O(6) and O(2) positions on KGM ring. Moreover, acety has significant influence on hydrogen bonding network and hydrogen bonding network structures are more stable after deacetylation.  相似文献   

19.
In this work, de-watered cellulose pulp(DCP), obtained from a paper mill, have been acid-hydrolyzed to yield cellulose nano-whiskers (CNWs). As revealed from FESEM measurements, these CNW were found to possess a median length of 258.5 nm, diameter of 35.2 nm, and an aspect ratio of 7.3. The CNWs were also characterized by TGA, XRD and FTIR analysis. The CNWs were found to possess a fairly high Crystallinity Index (CI) of 0.925. The addition of cellulose at low concentration range, i.e., from 25 to 125 mg (nearly 1.25 to 6.25 weight percent of polymer sodium acrylate) caused an enhancement in water uptake of resulting hydrogels .The CNWs-loaded poly(SA) hydrogels showed chain relaxation controlled swelling in the medium of pH 7.4 as was confirmed from the swelling exponent ‘n’ values obtained using power function law‥ The second order kinetic model was found to fit well to the kinetic water uptake data. However, all the samples, when prepared in the form of films, did not show any remarkable increase in their mechanical strength.  相似文献   

20.
α-Ketoglutaramate (KGM) is the α-keto acid analogue of glutamine, which exists mostly in equilibrium with a lactam form (2-hydroxy-5-oxoproline) under physiological conditions. KGM was identified in human urine and its concentration quantified by gas chromatography/mass spectrometry (GC/MS). The keto acid was shown to be markedly elevated in urine obtained from patients with primary hyperammonemia due to an inherited metabolic defect in any one of the five enzymes of the urea cycle. Increased urinary KGM was also noted in other patients with primary hyperammonemia, including three patients with a defect resulting in lysinuric protein intolerance and one of two patients with a defect in the ornithine transporter I. These findings indicate disturbances in nitrogen metabolism, most probably at the level of glutamine metabolism in primary hyperammonemia diseases. Urinary KGM levels, however, were not well correlated with secondary hyperammonemia in patients with propionic acidemia or methylmalonic acidemia, possibly as a result, in part, of decreased glutamine levels. In conclusion, the GC/MS procedure has the required lower limit of quantification for analysis of urinary KGM, which is markedly increased in urea cycle disorders and other primary hyperammonemic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号