首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a unified analysis for a class of long-step primal-dual path-following algorithms for semidefinite programming whose search directions are obtained through linearization of the symmetrized equation of the central pathH P (XS) [PXSP –1 + (PXSP –1) T ]/2 = I, introduced by Zhang. At an iterate (X,S), we choose a scaling matrixP from the class of nonsingular matricesP such thatPXSP –1 is symmetric. This class of matrices includes the three well-known choices, namely:P = S 1/2 andP = X –1/2 proposed by Monteiro, and the matrixP corresponding to the Nesterov—Todd direction. We show that within the class of algorithms studied in this paper, the one based on the Nesterov—Todd direction has the lowest possible iteration-complexity bound that can provably be derived from our analysis. More specifically, its iteration-complexity bound is of the same order as that of the corresponding long-step primal-dual path-following algorithm for linear programming introduced by Kojima, Mizuno and Yoshise. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Corresponding author.This author's research is supported in part by the National Science Foundation under grants INT-9600343 and CCR-9700448 and the Office of Naval Research under grant N00014-94-1-0340.This author's research was supported in part by DOE DE-FG02-93ER25171-A001.  相似文献   

2.
The main goals of this paper are to: i) relate two iteration-complexity bounds derived for the Mizuno-Todd-Ye predictor-corrector (MTY P-C) algorithm for linear programming (LP), and; ii) study the geometrical structure of the LP central path. The first iteration-complexity bound for the MTY P-C algorithm considered in this paper is expressed in terms of the integral of a certain curvature function over the traversed portion of the central path. The second iteration-complexity bound, derived recently by the authors using the notion of crossover events introduced by Vavasis and Ye, is expressed in terms of a scale-invariant condition number associated with m × n constraint matrix of the LP. In this paper, we establish a relationship between these bounds by showing that the first one can be majorized by the second one. We also establish a geometric result about the central path which gives a rigorous justification based on the curvature of the central path of a claim made by Vavasis and Ye, in view of the behavior of their layered least squares path following LP method, that the central path consists of long but straight continuous parts while the remaining curved part is relatively “short”. R. D. C. Monteiro was supported in part by NSF Grants CCR-0203113 and CCF-0430644 and ONR grant N00014-05-1-0183. T. Tsuchiya was supported in part by Japan-US Joint Research Projects of Japan Society for the Promotion of Science “Algorithms for linear programs over symmetric cones” and the Grants-in-Aid for Scientific Research (C) 15510144 of Japan Society for the Promotion of Science.  相似文献   

3.
We present a framework for designing and analyzing primal-dual interior-point methods for convex optimization. We assume that a self-concordant barrier for the convex domain of interest and the Legendre transformation of the barrier are both available to us. We directly apply the theory and techniques of interior-point methods to the given good formulation of the problem (as is, without a conic reformulation) using the very usual primal central path concept and a less usual version of a dual path concept. We show that many of the advantages of the primal-dual interior-point techniques are available to us in this framework and therefore, they are not intrinsically tied to the conic reformulation and the logarithmic homogeneity of the underlying barrier function.Part of the research was done while the author was a Visiting Professor at the University of Waterloo.Research of this author is supported in part by a PREA from Ontario and by a NSERC Discovery Grant. Tel: (519) 888-4567 ext.5598, Fax: (519) 725-5441Mathematics Subject Classification (2000): 90C51, 90C25, 65Y20,90C28, 49D49  相似文献   

4.
In this paper we analyze from a unique point of view the behavior of path-following and primal-dual potential reduction methods on nonlinear conic problems. We demonstrate that most interior-point methods with efficiency estimate can be considered as different strategies of minimizing aconvex primal-dual potential function in an extended primal-dual space. Their efficiency estimate is a direct consequence of large local norm of the gradient of the potential function along a central path. It is shown that the neighborhood of this path is a region of the fastest decrease of the potential. Therefore the long-step path-following methods are, in a sense, the best potential-reduction strategies. We present three examples of such long-step strategies. We prove also an efficiency estimate for a pure primal-dual potential reduction method, which can be considered as an implementation of apenalty strategy based on a functional proximity measure. Using the convex primal dual potential, we prove efficiency estimates for Karmarkar-type and Dikin-type methods as applied to a homogeneous reformulation of the initial primal-dual problem.  相似文献   

5.
We describe an interior-point algorithm for monotone linear complementarity problems in which primal-dual affine scaling is used to generate the search directions. The algorithm is shown to have global and superlinear convergence with Q-order up to (but not including) two. The technique is shown to be consistent with a potential-reduction algorithm, yielding the first potential-reduction algorithm that is both globally and superlinearly convergent.Corresponding author. The work of this author was based on research supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.The work of this author was based on research supported by the National Science Foundation under grant DDM-9109404 and the Office of Naval Research under grant N00014-93-1-0234. This work was done while the author was a faculty member of the Systems and Industrial Engineering Department at the University of Arizona.  相似文献   

6.
《Optimization》2012,61(6):641-663
In the present article rather general penalty/barrier-methods are considered, that define a local continuously differentiable primal-dual path. The class of penalty/barrier terms includes most of the usual techniques like logarithmic barriers, SUMT, quadratic loss functions as well as exponential penalties, and the optimization problem which may contain inequality as well as equality constraints. The convergence of the corresponding general primal-dual path-following method is shown for local minima that satisfy strong second-order sufficiency conditions with linear independence constraint qualification (LICQ) and strict complementarity. A basic tool in the analysis of these methods is to estimate the radius of convergence of Newton's method depending on the penalty/barrier-parameter. Without using self-concordance properties convergence bounds are derived by direct estimations of the solutions of the Newton equations. Parameter selection rules are proposed which guarantee the local convergence of the considered penalty/barrier-techniques with only a finite number of Newton steps at each parameter level. Numerical examples illustrate the practical behavior of the proposed class of methods.  相似文献   

7.
We prove a new local convergence property of some primal-dual methods for solving nonlinear optimization problems. We consider a standard interior point approach, for which the complementarity conditions of the original primal-dual system are perturbed by a parameter driven to zero during the iterations. The sequence of iterates is generated by a linearization of the perturbed system and by applying the fraction to the boundary rule to maintain strict feasibility of the iterates with respect to the nonnegativity constraints. The analysis of the rate of convergence is carried out by considering an arbitrary sequence of perturbation parameters converging to zero. We first show that, once an iterate belongs to a neighbourhood of convergence of the Newton method applied to the original system, then the whole sequence of iterates converges to the solution. In addition, if the perturbation parameters converge to zero with a rate of convergence at most superlinear, then the sequence of iterates becomes asymptotically tangent to the central trajectory in a natural way. We give an example showing that this property can be false when the perturbation parameter goes to zero quadratically.   相似文献   

8.
Interior path following primal-dual algorithms. part I: Linear programming   总被引:5,自引:1,他引:4  
We describe a primal-dual interior point algorithm for linear programming problems which requires a total of number of iterations, whereL is the input size. Each iteration updates a penalty parameter and finds the Newton direction associated with the Karush-Kuhn-Tucker system of equations which characterizes a solution of the logarithmic barrier function problem. The algorithm is based on the path following idea.  相似文献   

9.
We describe a primal-dual interior point algorithm for convex quadratic programming problems which requires a total of number of iterations, whereL is the input size. Each iteration updates a penalty parameter and finds an approximate Newton direction associated with the Karush-Kuhn-Tucker system of equations which characterizes a solution of the logarithmic barrier function problem. The algorithm is based on the path following idea. The total number of arithmetic operations is shown to be of the order of O(n 3 L).  相似文献   

10.
In this paper we develop new primal-dual interior-point methods for linear programming problems, which are based on the concept of parabolic target space. We show that such schemes work in the infinity-neighborhood of the primal-dual central path. Nevertheless, these methods possess the best known complexity estimate. We demonstrate that the adaptive-step path-following strategies can be naturally incorporated in such schemes.  相似文献   

11.
Recently, numerous research efforts, most of them concerned with superlinear convergence of the duality gap sequence to zero in the Kojima—Mizuno—Yoshise primal-dual interior-point method for linear programming, have as a primary assumption the convergence of the iteration sequence. Yet, except for the case of nondegeneracy (uniqueness of solution), the convergence of the iteration sequence has been an important open question now for some time. In this work we demonstrate that for general problems, under slightly stronger assumptions than those needed for superlinear convergence of the duality gap sequence (except of course the assumption that the iteration sequence converges), the iteration sequence converges. Hence, we have not only established convergence of the iteration sequence for an important class of problems, but have demonstrated that the assumption that the iteration sequence converges is redundant in many of the above mentioned works.This research was supported in part by NSF Coop. Agr. No. CCR-8809615. A part of this research was performed in June, 1991 while the second and the third authors were at Rice University as visiting members of the Center for Research in Parallel Computation.Corresponding author. Research supported in part by AFOSR 89-0363, DOE DEFG05-86ER25017 and ARO 9DAAL03-90-G-0093.Research supported in part by NSF DMS-9102761 and DOE DE-FG05-91ER25100.Research supported in part by NSF DDM-8922636.  相似文献   

12.
A practical warm-start procedure is described for the infeasible primal-dual interior-point method (IPM) employed to solve the restricted master problem within the cutting-plane method. In contrast to the theoretical developments in this field, the approach presented in this paper does not make the unrealistic assumption that the new cuts are shallow. Moreover, it treats systematically the case when a large number of cuts are added at one time. The technique proposed in this paper has been implemented in the context of HOPDM, the state of the art, yet public domain, interior-point code. Numerical results confirm a high degree of efficiency of this approach: regardless of the number of cuts added at one time (can be thousands in the largest examples) and regardless of the depth of the new cuts, reoptimizations are usually done with a few additional iterations. Supported by the Fonds National de la Recherche Scientifique Suisse, grant #12-42503.94.  相似文献   

13.
14.
This note establishes a new sufficient condition for the existence and uniqueness of the Alizadeh-Haeberly-Overton direction for semidefinite programming. The work of these authors was based on research supported by the National Science Foundation under grants INT-9600343 and CCR-970048 and the Office of Naval Research under grant N00014-94-1-0340.  相似文献   

15.
In this paper we analyze the rate of local convergence of the Newton primal-dual interior-point method when the iterates are kept strictly feasible with respect to the inequality constraints. It is shown under the classical conditions that the rate is q-quadratic when the functions associated to the binding inequality constraints are concave. In general, the q-quadratic rate is achieved provided the step in the primal variables does not become asymptotically orthogonal to any of the gradients of the binding inequality constraints.  相似文献   

16.
One of the main ingredients of interior-point methods is the generation of iterates in a neighborhood of the central path. Measuring how close the iterates are to the central path is an important aspect of such methods and it is accomplished by using proximity measure functions. In this paper, we propose a unified presentation of the proximity measures and a study of their relationships and computational role when using a generic primal-dual interior-point method for computing the analytic center for a standard linear optimization problem. We demonstrate that the choice of the proximity measure can affect greatly the performance of the method. It is shown that we may be able to choose the algorithmic parameters and the central-path neighborhood radius (size) in such a way to obtain comparable results for several measures. We discuss briefly how to relate some of these results to nonlinear programming problems. The first author was partially supported by Simón Bolívar University, Venezuelan National Council for Sciences and Technology (CONICIT) Grant PG97-000592, Center for Research on Parallel Computing of Rice University, and TU Delft. The authors thank Amr El Bakry, Richard Tapia, Adolfo Quiroz, and Pedro Berrizbeitia for discussions and suggestions. They acknowledge the observations and comments of the editors and an anonymous referee.  相似文献   

17.
In this paper we present a class of polynomial primal-dual interior-point algorithms for linear optimization based on a new class of kernel functions. This class is fairly general and includes the classical logarithmic function, the prototype self-regular function, and non-self-regular kernel functions as special cases. The analysis of the algorithms in the paper follows the same line of arguments as in Bai et al. (SIAM J. Optim. 15:101–128, [2004]), where a variety of non-self-regular kernel functions were considered including the ones with linear and quadratic growth terms. However, the important case when the growth term is between linear and quadratic was not considered. The goal of this paper is to introduce such class of kernel functions and to show that the interior-point methods based on these functions have favorable complexity results. They match the currently best known iteration bounds for the prototype self-regular function with quadratic growth term, the simple non-self-regular function with linear growth term, and the classical logarithmic kernel function. In order to achieve these complexity results, several new arguments had to be used. This research is partially supported by the grant of National Science Foundation of China 10771133 and the Program of Shanghai Pujiang 06PJ14039.  相似文献   

18.
A new algorithm for solving nonconvex, equality-constrained optimization problems with separable structures is proposed in the present paper. A new augmented Lagrangian function is derived, and an iterative method is presented. The new proposed Lagrangian function preserves separability when the original problem is separable, and the property of linear convergence of the new algorithm is also presented. Unlike earlier algorithms for nonconvex decomposition, the convergence ratio for this method can be made arbitrarily small. Furthermore, it is feasible to extend this method to algorithms suited for inequality-constrained optimization problems. An example is included to illustrate the method.This research was supported in part by the National Science Foundation under NSF Grant No. ECS-85-06249.  相似文献   

19.
Each master iteration of a simplified Newton algorithm for solving a system of equations starts by computing the Jacobian matrix and then uses this matrix in the computation ofp Newton steps: the first of these steps is exact, and the other are called “simplified”. In this paper we apply this approach to a large step path following algorithm for monotone linear complementarity problems. The resulting method generates sequences of objective values (duality gaps) that converge to zero with Q-orderp+1 in the number of master iterations, and with a complexity of iterations. Corresponding author. Research done while visiting the Delft Technical University, and supported in part by CAPES — Brazil.  相似文献   

20.
This paper provides an analysis of the polynomiality of primal-dual interior point algorithms for nonlinear complementarity problems using a wide neighborhood. A condition for the smoothness of the mapping is used, which is related to Zhu’s scaled Lipschitz condition, but is also applicable to mappings that are not monotone. We show that a family of primal-dual affine scaling algorithms generates an approximate solution (given a precision ε) of the nonlinear complementarity problem in a finite number of iterations whose order is a polynomial ofn, ln(1/ε) and a condition number. If the mapping is linear then the results in this paper coincide with the ones in Jansen et al., SIAM Journal on Optimization 7 (1997) 126–140. Research supported in part by Grant-in-Aids for Encouragement of Young Scientists (06750066) from the Ministry of Education, Science and Culture, Japan. Research supported by Dutch Organization for Scientific Research (NWO), grant 611-304-028  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号