首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We study links between the linear bilevel and linear mixed 0–1 programming problems. A new reformulation of the linear mixed 0–1 programming problem into a linear bilevel programming one, which does not require the introduction of a large finite constant, is presented. We show that solving a linear mixed 0–1 problem by a classical branch-and-bound algorithm is equivalent in a strong sense to solving its bilevel reformulation by a bilevel branch-and-bound algorithm. The mixed 0–1 algorithm is embedded in the bilevel algorithm through the aforementioned reformulation; i.e., when applied to any mixed 0–1 instance and its bilevel reformulation, they generate sequences of subproblems which are identical via the reformulation.  相似文献   

2.
In this work we present a global optimization algorithm for solving a class of large-scale nonconvex optimization models that have a decomposable structure. Such models, which are very expensive to solve to global optimality, are frequently encountered in two-stage stochastic programming problems, engineering design, and also in planning and scheduling. A generic formulation and reformulation of the decomposable models is given. We propose a specialized deterministic branch-and-cut algorithm to solve these models to global optimality, wherein bounds on the global optimum are obtained by solving convex relaxations of these models with certain cuts added to them in order to tighten the relaxations. These cuts are based on the solutions of the sub-problems obtained by applying Lagrangean decomposition to the original nonconvex model. Numerical examples are presented to illustrate the effectiveness of the proposed method compared to available commercial global optimization solvers that are based on branch and bound methods.  相似文献   

3.
This article presents an outcome-space pure cutting-plane algorithm for globally solving the linear multiplicative programming problem. The framework of the algorithm is taken from a pure cutting-plane decision set-based method developed by Horst and Tuy for solving concave minimization problems. By adapting this method to an outcome-space reformulation of the linear multiplicative programming problem, rather than applying directly the method to the original decision-set formulation, it is expected that considerable computational savings can be obtained. Also, we show how additional computational benefits might be obtained by implementing the new algorithm appropriately. To illustrate the new algorithm, we apply it to the solution of a sample problem.  相似文献   

4.
We present a new algorithm for solving linear multistage stochastic programming problems with objective function coefficients modeled as a stochastic process. This algorithm overcomes the difficulties of existing methods which require discretization. Using an argument based on the finiteness of the set of possible cuts, we prove that the algorithm converges almost surely. Finally, we demonstrate the practical application of the algorithm on a hydro-bidding example with the spot-price modeled as an auto-regressive process.  相似文献   

5.
We propose a class of partially observable multistage stochastic programs and describe an algorithm for solving this class of problems. We provide a Bayesian update of a belief-state vector, extend the stochastic programming formulation to incorporate the belief state, and characterize saddle-function properties of the corresponding cost-to-go function. Our algorithm is a derivative of the stochastic dual dynamic programming method.  相似文献   

6.
In this paper, we present a scenario aggregation algorithm for the solution of the dynamic minimax problem in stochastic programming. We consider the case where the joint probability distribution has a known finite support. The algorithm applies the Alternating Direction of Multipliers Method on a reformulation of the minimax problem using a double duality framework. The problem is solved by decomposition into scenario sub-problems, which are deterministic multi-period problems. Convergence properties are deduced from the Alternating Direction of Multipliers. The resulting algorithm can be seen as an extension of Rockafellar and Wets Progressive Hedging algorithm to the dynamic minimax context.  相似文献   

7.
Handling uncertainty in natural inflow is an important part of a hydroelectric scheduling model. In a stochastic programming formulation, natural inflow may be modeled as a random vector with known distribution, but the size of the resulting mathematical program can be formidable. Decomposition-based algorithms take advantage of special structure and provide an attractive approach to such problems. We develop an enhanced Benders decomposition algorithm for solving multistage stochastic linear programs. The enhancements include warm start basis selection, preliminary cut generation, the multicut procedure, and decision tree traversing strategies. Computational results are presented for a collection of stochastic hydroelectric scheduling problems.  相似文献   

8.
We introduce and study two-stage stochastic symmetric programs with recourse to handle uncertainty in data defining (deterministic) symmetric programs in which a linear function is minimized over the intersection of an affine set and a symmetric cone. We present a Benders’ decomposition-based interior point algorithm for solving these problems and prove its polynomial complexity. Our convergence analysis proved by showing that the log barrier associated with the recourse function of stochastic symmetric programs behaves a strongly self-concordant barrier and forms a self-concordant family on the first stage solutions. Since our analysis applies to all symmetric cones, this algorithm extends Zhao’s results [G. Zhao, A log barrier method with Benders’ decomposition for solving two-stage stochastic linear programs, Math. Program. Ser. A 90 (2001) 507–536] for two-stage stochastic linear programs, and Mehrotra and Özevin’s results [S. Mehrotra, M.G. Özevin, Decomposition-based interior point methods for two-stage stochastic semidefinite programming, SIAM J. Optim. 18 (1) (2007) 206–222] for two-stage stochastic semidefinite programs.  相似文献   

9.
The stochastic uncapacitated single allocation p-hub center problem is an extension of the deterministic version which aims to minimize the longest origin-destination path in a hub and spoke network. Considering the stochastic nature of travel times on links is important when designing a network to guarantee the quality of service measured by a maximum delivery time for a proportion of all deliveries. We propose an efficient reformulation for a stochastic p-hub center problem and develop exact solution approaches based on variable reduction and a separation algorithm. We report numerical results to show effectiveness of our new reformulations and approaches by finding global solutions of small-medium sized problems. The combination of model reformulation and a separation algorithm is particularly noteworthy in terms of computational speed.  相似文献   

10.
Extended Linear-Quadratic Programming (ELQP) problems were introduced by Rockafellar and Wets for various models in stochastic programming and multistage optimization. Several numerical methods with linear convergence rates have been developed for solving fully quadratic ELQP problems, where the primal and dual coefficient matrices are positive definite. We present a two-stage sequential quadratic programming (SQP) method for solving ELQP problems arising in stochastic programming. The first stage algorithm realizes global convergence and the second stage algorithm realizes superlinear local convergence under a condition calledB-regularity.B-regularity is milder than the fully quadratic condition; the primal coefficient matrix need not be positive definite. Numerical tests are given to demonstrate the efficiency of the algorithm. Solution properties of the ELQP problem underB-regularity are also discussed.Supported by the Australian Research Council.  相似文献   

11.
We propose an Integer Linear Programming (ILP) approach for solving integer programs with bilinear objectives and linear constraints. Our approach is based on finding upper and lower bounds for the integer ensembles in the bilinear objective function, and using the bounds to obtain a tight ILP reformulation of the original problem, which can then be solved efficiently. Numerical experiments suggest that the proposed approach outperforms a latest iterative ILP approach, with notable reductions in the average solution time.  相似文献   

12.
This paper revisits an efficient procedure for solving posynomial geometric programming (GP) problems, which was initially developed by Avriel et al. The procedure, which used the concept of condensation, was embedded within an algorithm for the more general (signomial) GP problem. It is shown here that a computationally equivalent dual-based algorithm may be independently derived based on some more recent work where the GP primal-dual pair was reformulated as a set of inexact linear programs. The constraint structure of the reformulation provides insight into why the algorithm is successful in avoiding all of the computational problems traditionally associated with dual-based algorithms. Test results indicate that the algorithm can be used to successfully solve large-scale geometric programming problems on a desktop computer.  相似文献   

13.
We present a new method for solving stochastic programs with joint chance constraints with random technology matrices and discretely distributed random data. The problem can be reformulated as a large-scale mixed 0–1 integer program. We derive a new class of optimality cuts called IIS cuts and apply them to our problem. The cuts are based on irreducibly infeasible subsystems (IIS) of an LP defined by requiring that all scenarios be satisfied. We propose a method for improving the upper bound of the problem when no cut can be found. We derive and implement a branch-and-cut algorithm based on IIS cuts, and refer to this algorithm as the IIS branch-and-cut algorithm. We report on computational results with several test instances from optimal vaccine allocation. The computational results are promising as the IIS branch-and-cut algorithm gives better results than a state-of-the-art commercial solver on one class of problems.  相似文献   

14.
We consider two-stage quadratic integer programs with stochastic right-hand sides, and present an equivalent reformulation using value functions. We propose a two-phase solution approach. The first phase constructs value functions of quadratic integer programs in both stages. The second phase solves the reformulation using a global branch-and-bound algorithm or a level-set approach. We derive some basic properties of value functions of quadratic integer programs and utilize them in our algorithms. We show that our approach can solve instances whose extensive forms are hundreds of orders of magnitude larger than the largest quadratic integer programming instances solved in the literature.  相似文献   

15.
This paper deals with two-stage and multi-stage stochastic programs in which the right-hand sides of the constraints are Gaussian random variables. Such problems are of interest since the use of Gaussian estimators of random variables is widespread. We introduce algorithms to find upper bounds on the optimal value of two-stage and multi-stage stochastic (minimization) programs with Gaussian right-hand sides. The upper bounds are obtained by solving deterministic mathematical programming problems with dimensions that do not depend on the sample space size. The algorithm for the two-stage problem involves the solution of a deterministic linear program and a simple semidefinite program. The algorithm for the multi-stage problem invovles the solution of a quadratically constrained convex programming problem.  相似文献   

16.
This paper presents a sequential quadratic programming algorithm for computing a stationary point of a mathematical program with linear complementarity constraints. The algorithm is based on a reformulation of the complementarity condition as a system of semismooth equations by means of Fischer-Burmeister functional, combined with a classical penalty function method for solving constrained optimization problems. Global convergence of the algorithm is established under appropriate assumptions. Some preliminary computational results are reported.  相似文献   

17.
In this paper, we first refine a recently proposed metaheuristic called “Marriage in Honey-Bees Optimization” (MBO) for solving combinatorial optimization problems with some modifications to formally show that MBO converges to the global optimum value. We then adapt MBO into an algorithm called “Honey-Bees Policy Iteration” (HBPI) for solving infinite horizon-discounted cost stochastic dynamic programming problems and show that HBPI also converges to the optimal value.  相似文献   

18.
We present a constant-potential infeasible-start interior-point (INFCP) algorithm for linear programming (LP) problems with a worst-case iteration complexity analysis as well as some computational results.The performance of the INFCP algorithm is compared to those of practical interior-point algorithms. New features of the algorithm include a heuristic method for computing a good starting point and a procedure for solving the augmented system arising from stochastic programming with simple recourse. We also present an application to large scale planning problems under uncertainty.  相似文献   

19.
We consider in this paper the Lagrangian dual method for solving general integer programming. New properties of Lagrangian duality are derived by a means of perturbation analysis. In particular, a necessary and sufficient condition for a primal optimal solution to be generated by the Lagrangian relaxation is obtained. The solution properties of Lagrangian relaxation problem are studied systematically. To overcome the difficulties caused by duality gap between the primal problem and the dual problem, we introduce an equivalent reformulation for the primal problem via applying a pth power to the constraints. We prove that this reformulation possesses an asymptotic strong duality property. Primal feasibility and primal optimality of the Lagrangian relaxation problems can be achieved in this reformulation when the parameter p is larger than a threshold value, thus ensuring the existence of an optimal primal-dual pair. We further show that duality gap for this partial pth power reformulation is a strictly decreasing function of p in the case of a single constraint. Dedicated to Professor Alex Rubinov on the occasion of his 65th birthday. Research supported by the Research Grants Council of Hong Kong under Grant CUHK 4214/01E, and the National Natural Science Foundation of China under Grants 79970107 and 10571116.  相似文献   

20.
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These cuts can be readily incorporated in branch-and-bound algorithms that solve either second-order conic programming or linear programming relaxations of conic integer programs at the nodes of the branch-and-bound tree. Central to our approach is a reformulation of the second-order conic constraints with polyhedral second-order conic constraints in a higher dimensional space. In this representation the cuts we develop are linear, even though they are nonlinear in the original space of variables. This feature leads to a computationally efficient implementation of nonlinear cuts for conic mixed-integer programming. The reformulation also allows the use of polyhedral methods for conic integer programming. We report computational results on solving unstructured second-order conic mixed-integer problems as well as mean–variance capital budgeting problems and least-squares estimation problems with binary inputs. Our computational experiments show that conic mixed-integer rounding cuts are very effective in reducing the integrality gap of continuous relaxations of conic mixed-integer programs and, hence, improving their solvability. This research has been supported, in part, by Grant # DMI0700203 from the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号