首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extraction of uranium(VI) from an aqueous HNO3 phase into an organic phase consisting of a polyurethane foam immobilizing a solution of di(2-ethylhexyl)phosphoric acid (HDEHP) in o-dichlorobenzene has been investigated at varying concentrations of nitric acid and HDEHP. The mechanism of the extraction is discussed on the basis of the results obtained. The aggregation number of HDEHP immobilized on the foam was obtained from the analysis of data obtained for the extraction of cerium(III) from acidic perchlorate solutions of constant ionic strength.  相似文献   

2.
This stability of Sb(III) and Sb(V) species was studied during single extraction from soils by water. EDTA, diluted H2SO4 and H3PO4, and oxalic acid/oxalate solutions, with and without ascorbic acid, were used as stabilizing reagent of both Sb species. Antimony redox speciation in soil extracts was performed by selective hydride generation-atomic fluorescence spectrometry. Simulated extraction procedures (without soil) showed that, except in oxalate medium, Sb(III) was oxidized to Sb(V), and this reaction was avoided with ascorbic acid. Recovery studies from a spiked agricultural soil showed that no oxidation but sorption of Sb(III) occurred during the extraction process in water and H2SO4 medium, and quantitative oxidation in EDTA and oxalate medium. With ascorbic acid, this oxidation was totally avoided in EDTA and partially avoided in oxalate solution. A new sequential extraction procedure was proposed and applied to the fractionation and redox speciation of antimony in agricultural soils, using EDTA + ascorbic acid, pH 7 (available under complexing and moderately reducible conditions); oxalic acid/oxalate + ascorbic acid (extractable in reducible conditions) and HNO3 + HCl + HF (residual fraction). The proposed extraction scheme can provide information about the availability and mobility of antimony redox species in agricultural soils.  相似文献   

3.
The solution conditions and other parameters affecting the ammonium pyrrolidine-dithiocarbamate—methyl isobutyl ketone extraction system for graphite-furnace atomic absorption spectrometric determination of As(III), As(V), Sb(III), Sb(V), Se(IV) and Se(VI) were studied in detail. The solution conditions for the single or simultaneous extraction of As(III), Sb(III) and Se(IV) were not critical. Arsenic(V) and Se(VI) were not extracted over the entire range of pH and acidity studied. Antimony(V) was extracted only in the acidity range 0.3—1.0 M HCl. Simultaneous extraction of total arsenic and total antimony was possible after reduction of As(V) with thiosulphate. Interference studies are also reported.  相似文献   

4.
A sensitive and simple method for flame atomic absorption spectrometry (FAAS) determination of antimony species after separation/preconcentration by cloud point extraction (CPE) has been developed. When the system temperature is higher than the cloud point extraction temperature, the complex of antimony (III) with N-benzoyl-N-phenyhydroxylamine (BPHA) can enter the surfactant-rich phase, whereas the antimony (V) remains in the aqueous phase. Antimony (III) in surfactant-rich phase was analyzed by FAAS and antimony (V) was calculated by subtracting of antimony (III) from the total antimony after reducing antimony (V) to antimony (III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of BPHA and Triton X-114, equilibration temperature and time, were investigated systematically. Under optimized conditions, the detection limits (3σ) were 1.82 ng mL−1 for Sb(III) and 2.08 ng mL−1 for Sb(total), and the relative standard deviations (RSDs) were 2.6% for Sb(III) and 2.2% for Sb(total). The proposed method was applied to the speciation of antimony species in artificial seawater and wastewater, and recoveries in the range of 95.3–106% were obtained by spiking real samples. This technique was validated by means of reference water materials and gave good agreement with certified values.  相似文献   

5.
Solvent extraction of Pu(IV) and Am(III) from aqueous nitric acid into room temperature ionic liquid (RTIL) by an acidic extractant HDEHP (di-2-ethyl hexyl phosphoric acid) was carried out. The D values indicated substantial extraction for Pu(IV) and poor extraction for Am(III) at 1M aqueous nitric acid concentration. However at lower aqueous nitric acid concentrations (pH 3), the Am(III) extraction was found to be quantitative. The least squares analysis of the extraction data for both the actinides ascertained the stoichiometry of the extracted species in the RTIL phase for Pu(IV) and Am(III) as [PuH(DEHP)2]3+, AmH(DEHP)2+. From the D values at two temperatures, the thermodynamic parameters of the extraction reaction for Pu(IV) was calculated.  相似文献   

6.
Summary A method is described for the speciation of Sb(III) and Sb(V) using HG-AAS. The efficiency of stibine generation using different pH, from Sb(III) and Sb(V) solutions, was tested. At high pH-values Sb(V) is not reduced to form stibine, Sb(III) being selectively determined. The three acids HCl, H2SO4 and H3PO4 at controlled pH were used to generate stibine, H3PO4 being the most satisfactory for antimony speciation. The interference of Sb(V) was studied for the case of Sb(III) determination with stibine generation in H3PO4 medium (pH 1.81). The speciation of Sb(III) and Sb(V) is possible up to a ratio of 1:9.  相似文献   

7.
The biological activity of antimony depends on the oxidation state. The Sb(III) and Sb(V) states can be distinguished, even in the ng l?1 range, by coupling extraction with ammonium pyrrlidenedithiocarbamate into methyl isobutyl ketone (APDC/MIBK), or N-benzoyl-N-phenylhydroxylamine (BPHA) into chloroform, with anodic stripping voltammetry (a.s.v.). After complex formation with APDC in acetate-buffered medium, Sb(III), but not Sb(V), is extracted into MIBK and quantified by a.s.v. Antimony(V) is quantified in the aqueous phase after removal of Sb(III) by extraction with BPHA into chloroform from the medium acidified with nitric acid. The applicability of the proposed separation/a.s.v. method is demonstrated for samples of rain, snow and water from a dredging operation. The stability of the two antimony species is examined for natural waters with Sb(III) and Sb(V) added; possibilities of stabilization are described. The precedures should be suitable for speciation of antimony in relatively unpolluted waters.  相似文献   

8.
A new method of hollow fiber supported liquid membrane extraction (HF-SLME) coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) for the speciation of Sb(III) and Sb(V) in environmental and biological samples has been developed. The method is based on the complex of Sb(III) with sodium diethyldithiocarbamate (DDTC). The formed hydrophobic complex is subsequently extracted into the lumen of hollow fiber, whereas Sb(V) is remained in aqueous solutions. The extraction organic phase was injected into TS-FF-AAS for the determination of Sb(III). Total Sb concentration was determined after reduction of Sb(V) to Sb(III) in the presence of l-cysteine and the extraction procedure mentioned above. Sb(V) was calculated by subtracting of Sb(III) from the total Sb. DDTC was used as complexing reagent. 1-Octanol was immobilized in the pores of the polypropylene hollow fiber as liquid membrane and also used as the acceptor solution. Some parameters that influenced extraction and determination were evaluated in detail, such as concentration of sodium diethyldithiocarbamate (DDTC), type of organic solvent, pH of samples, stirring rates, extraction time, as well as interferences. Under optimized conditions, a detection limit of 0.8 ng mL−1 and an enrichment factor of 160 were achieved. The relative standard deviation (RSD) was 6.2% for Sb(III) (50 ng mL−1, n = 5). The proposed method was successfully applied to the speciation of Sb(III) and Sb(V) in environmental and biological samples with satisfactory results.  相似文献   

9.
A chelating sorbent obtained by immobilization of thionalide on the macroporous resin Bio Beads SM-7 was used for speciation of antimony(III) and (V) in natural waters. Antimony(III) was separated from Sb(V) by sorption on a column with the sorbent at pH 5. Antimony(V) in the effluent was reduced to Sb(III) and preconcentrated by sorption on the sorbent from 0.5M HCl solution. Both the separated species were determined directly on the sorbent by neutron activation analysis.  相似文献   

10.
A novel method for prevention of the oxidation of Sb(III) during sample pretreatment, preconcentration of Sb(III) and Sb(V) with nanometer size titanium dioxide (rutile) and speciation analysis of antimony, has been developed. Antimony(III) could be selectively determined by flow injection-hydride generation-atomic absorption spectrometry, coexisting with Sb(V). Trace Sb(III) and Sb(V) were all adsorbed onto 50 m g TiO2 from 500 ml solution at pH 3.0 within 15 min, then eluted by 10 ml of 5 mol/l HCl solution. One eluent was directly used for the analysis of Sb(III); to the other eluent was added 0.5 g KI and 0.2 g thiourea to reduce Sb(V) to Sb(III), then the mixture was used for the determination of total antimony. The antimony(V) content is the mathematical difference of the two concentrations. Detection limits (based on 3sigma of the blank determinations, n=11) of 0.05 ng/ml for Sb(III) and 0.06 ng/ml for Sb(V), were obtained.  相似文献   

11.
Antimony(III) and antimony(V) species have been selectively determined in liver tissues by optimizing the acidic conditions for the evolution of stibine using the reduction with sodium borohydride. The results show that a response for Sb(III) of 0.5 to 20 microg l(-1) was selectively obtained from samples in a 1 mol l(-1) acetic acid medium. The best response for total antimony from 1 to 20 microg l(-1) is obtained after sample treatment with a 0.5 mol l(-1) sulfuric acid and 10% w/v potassium iodide. Microwave digestion has been necessary to release quantitatively antimony species from sample slurries. The amount of Sb(V) was calculated from the difference between the value for total antimony and Sb(III) concentrations. A relative standard deviation from 2.9 to 3.1% and a detection limit of 0.15 and 0.10 microg l(-1) for Sb(III) and total Sb has been obtained. The average accuracy exceeded 95% in all cases comparing the results obtained from recovery studies, electrothermal atomic absorption spectrometry and the analysis of certified reference materials.  相似文献   

12.
Antimony is perhaps the most frequently used doping element of tin dioxide. Although antimony of different oxidation states have been used in the synthesis, the effect of dopant’s valence on ion exchange properties has not been investigated critically. In our study the valence of antimony had clear effects on the metal uptake properties of Sb-doped SnO2 materials. Extremely high Tc uptake (Kd > 100 000 mL g−1) on Sb(III)-doped material was observed in conditions under which Sb(V)-doped material did not show any Tc uptake. However, the Sb(V)-doped material showed good Ni2+ uptake properties (Kd up to 33 000 mL g−1), even at pH values below the material’s point of zero charge (pzc), while the Sb(III)-doped material showed Ni2+ uptake only at pH above its pzc. The cation uptake of Sb-doped SnO2 resembles typical weakly acidic cation exchanger character but the uptake of TcO4- does not follow a typical anion exchange pattern. Instead, we propose a sorption process related to redox reactions as the probable Tc uptake process.  相似文献   

13.
The extraction of Fe(III) and Fe(II) from various aqueous acidic solutions, with nitrobenzene, Amberlite LA-2, TBP and HDEHP is described. Conditions are given for the separation of Fe(III) from Fe(II). The extraction and separation of Fe(III) and Fe(II) is most adequate from HCl solutions, using the four solvents. The extraction of iron halides from H2SO4 solutions has been studied. The effect of water-miscible alcohols on the distribution of Fe(III) and Fe(II) was also studied. Extraction equilibria and mechanisms were proposed on the basis of the obtained results.  相似文献   

14.
The extraction of Am(III) from nitric, hydrochloric, oxalic, phosphoric and hydrofluoric acids was studied using 0.4F di-2-ethyl hexyl phosphoric acid (HDEHP) containing 0.1M phosphorous pentoxide (P2O5) in dodecane/xylene. The extraction with pure 0.4F HDEHP was found to be negligible from all the media studied. However, the presence of a small amount of P2O5 in it increased the extraction substantially. The distribution ratios of Am(III) obtained for HDEHP - P2O5 mixture 3M nitric acid containing different concentrations of oxalic acid/phosphoric acid/hydrofluoric acid are in the order of 200-250. The same for 3M hydrochloric acid is very high (800). These distribution ratios are sufficiently high for the quantitative extraction of Am(III) from all the acid media studied. Different reagents such as ammonium oxalate, sodium oxalate, oxalic acid, hydrofluoric acid, sodium carbonate and potassium sulphate were explored for the back extraction of Am(III) from 0.4F HDEHP + 0.1M P2O5 in dodecane/xylene. Of these, 0.35M ammonium oxalate and 1M sodium carbonate were found to be most suitable. The back extraction of Am(III) was also attempted with water and 1M H2SO4, HNO3, HClO4 and HCl solutions after allowing the extracted organics to degrade on its own. It was found that more than 90% of Am could be back extracted with these acids. Using this method more than 90% of Am(III) was recovered from nitric acid solutions containing calcium and fluoride ions.  相似文献   

15.
Glucantime, a pentavalent antimonial drug, is commonly used for the treatment of leishmaniasis but the presence of residual trivalent antimony, Sb(III), is thought to be responsible for toxic side-effects observed in patients. Numerous analytical studies have focused on determining Sb(III) concentrations in Glucantime but without reaching a consensus: results span over 3 orders of magnitude. In this study, we present a detailed new analytical approach showing that: (1) Sb(III) levels are much higher than previously reported and represent more than 30 % of total Sb; (2) determination of Sb(III) concentrations in acidic conditions is hampered by fast oxidation rates. This latter point explains the large variations in previously reported results of Sb(III) concentrations in Glucantime. Measurements were made here at a vibrated gold microwire electrode by stripping voltammetry enabling measurement of Sb(III) in acidic, neutral or alkaline conditions. The developed methods are sensitive (e.g., detection limits of 19 pM for 120 s deposition at pH 4.5), stable (<6 %, N?=?100), precise (5 %, N?=?5) and robust (same electrode used for weeks) at all pH values. In diluted solutions of Glucantime, Sb(III) levels were strongly dependent both on pH and ionic strength. At pH?<?3, Sb(III) is oxidized with oxidation rates that increase as pH is decreased. At high pH, Sb(III) forms electro-inactive complexes. Highest Sb(III) levels were detected at pH ~3 and at low ionic strength. The presence of several Sb(III) and Sb(V) species was demonstrated by different reduction waves obtained by stripping scanned voltammetry. As an implication of these unexpectedly high Sb(III) concentrations, an alternative model can be proposed for the mode of action of pentavalent antimonials against leishmaniasis, in which antimony complexes may act as molecular carrier of Sb(III) and release it specifically in the acidic intracellular compartment where the Leishmania parasites reside.  相似文献   

16.
The IR and electronic absorption spectra of di-2-ethylhexyl hydrogen phosphate (HDEHP) extracts of vanadium(V) and sulfuric acid and of vanadium(V) solutions in sulfuric acid were studied. The composition of the extractable complex was determined, and the equation of vanadium(V) extraction with HDEHP was suggested. The equilibrium constant of vanadium(V) extraction from concentrated sulfuric acid solutions was found.  相似文献   

17.
The paper presents a procedure for the multi-element inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Total As(III, V), Se(IV, VI) and Sb(III, V) were determined according to the following procedure: titanium dioxide (TiO2) was used to adsorb inorganic species of As, Se and Sb in sample solution; after filtration, the solid phase was prepared to be slurry for determination. For As(III), Se(IV) and Sb(III), their inorganic species were coprecipitated with Pb-PDC, dissolved in dilute nitric acid, and then determined. The concentrations of As(V), Se(VI) and Sb(V) can be calculated by the difference of the concentrations obtained by the above determinations. For the determination of As(III), Se(IV) and Sb(III), palladium was chosen as a modifier and pyrolysis temperature was 800 °C. Optimum conditions for the coprecipitation were listed for 100 ml of sample solution: pH 3.0, 15 min of stirring time, 40.0 μg l−1 Pb(NO3)2 and 150.0 μg l−1 APDC. The proposed method was applied to the determination of trace amounts of As(III, V), Se(IV, VI) and Sb(III, V) in river water and seawater.  相似文献   

18.
The speciation of inorganic Sb(III) and Sb(V) ions in aqueous solution was studied. The adsorption behavior of Sb(III) and Sb(V) ions were investigated as iodo and ammonium pyrollidine dithiocarbamate (APDC) complexes on a column filled with Amberlite XAD-8 resin. Sb(III) and Sb(V) ions were recovered quantitatively and simultaneously from a solution containing 0.8 M NaI and 0.2 M H2SO4 by the XAD-8 column. Sb(III) ions were also adsorbed quantitatively as an APDC complex, but the recovery of the Sb(V)-APDC complex was found to be <10% at pH 5. According to these data, the concentrations of total antimony as Sb(III)+Sb(V) ions and Sb(III) ion were determined with XAD-8/NaI+H2SO4 and XAD-8/APDC systems, respectively. The Sb(V) ion concentration was calculated by subtracting the Sb(III) concentration found with XAD-8/APDC system from the total antimony concentration found with XAD-8/NaI+H2SO4 system. The developed method was applied to determine Sb(III) and Sb(V) ions in samples of artificial seawater and wastewater.  相似文献   

19.
Antimony(III) and antimony(V) species have been selectively determined in liver tissues by optimizing the acidic conditions for the evolution of stibine using the reduction with sodium borohydride. The results show that a response for Sb(III) of 0.5 to 20 g l–1 was selectively obtained from samples in a 1 mol l–1 acetic acid medium. The best response for total antimony from 1 to 20 g l–1 is obtained after sample treatment with a 0.5 mol l–1 sulfuric acid and 10% w/v potassium iodide. Microwave digestion has been necessary to release quantitatively antimony species from sample slurries. The amount of Sb(V) was calculated from the difference between the value for total antimony and Sb(III) concentrations. A relative standard deviation from 2.9 to 3.1% and a detection limit of 0.15 and 0.10 g l–1 for Sb(III) and total Sb has been obtained. The average accuracy exceeded 95% in all cases comparing the results obtained from recovery studies, electrothermal atomic absorption spectrometry and the analysis of certified reference materials.Dedicated to Professor Dr. Peter Brätter on the occasion of his 60th birthday  相似文献   

20.
Separation of trivalent lanthanides (Ln(III)) and actinides (An(III)) is a key issue in the advanced spent nuclear fuel reprocessing. In the well-known trivalent actinide lanthanide separation by phosphorus reagent extraction from aqueous komplexes (TALSPEAK) process, the organophosphorus ligand HDEHP (di-(2-ethylhexyl) phosphoric acid) has been used as an efficient reagent for the partitioning of Ln(III) from An(III) with the combination of a holdback reagent in aqueous lactate buffer solution. In this work, the structural and electronic properties of Eu3+ and Am3+ complexes with HDEHP in nitric acid solution have been systematically explored by using scalar-relativistic density functional theory (DFT). It was found that HDEHP can coordinate with M(III) (M=Eu, Am) cations in the form of hydrogen-bonded dimers HL2- (L=DEHP), and the metal ions prefer to coordinate with the phosphoryl oxygen atom of the ligand. For all the extraction complexes, the metal-ligand bonds are mainly ionic in nature. Although Eu(III) complexes have higher interaction energies, the HL2- dimer shows comparable affinity for Eu(III) and Am(III) according to thermodynamic analysis, which may be attributed to the higher stabilities of Eu(III) nonahydrate. It is expected that this work could provide insightful information on the complexation of An(III) and Ln(III) with HDEHP at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号