首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mg K-edge and Zn K- and L3-edge X-ray absorption near edge spectra of Mg and Zn porphyrins in the ground state and low-lying optically excited states are calculated. Also computed are X-ray absorption near edge spectra of Fe(II) spin crossover compound in its ground and low-lying optically excited states, motivated by a recent experiment (J. Phys. Chem. A 2006, 110, 38). The calculated absorption spectra of optically excited states can be used to simulate ultrafast optical pump/X-ray probe experiments.  相似文献   

2.
Recent time-resolved X-ray absorption experiments probing the low-spin to high-spin photoconversion in Fe(II) complexes have monitored the complex interplay between electronic and structural degrees of freedom on an ultrafast time scale. In this study, we use transition potential (TP) and time-dependent (TD) DFT to simulate the picosecond time-resolved iron K-edge X-ray absorption spectrum of the spin crossover (SCO) complex, [Fe(tren(py)(3))](2+). This is achieved by simulating the X-ray absorption spectrum of [Fe(tren(py)(3))](2+) in its low-spin (LS), (1)A(1), ground state and its high-spin (HS), (5)T(2), excited state. These results are compared with the X-ray absorption spectrum of the high-spin analogue (HSA), [Fe(tren(6-Me-py)(3))](2+), which has a (5)T(2) ground state. We show that the TP-DFT methodology can simulate a 40 eV range of the iron K-edge XANES spectrum reproducing all of the major features observed in the static and transient spectra of the LS, HS, and HSA complexes. The pre-edge region of the K-edge spectrum, simulated by TD-DFT, is shown to be highly sensitive to metal-ligand bonding. Changes in the intensity of the pre-edge region are shown to be sensitive to both symmetry and π-backbonding by analysis of relative electric dipole and quadrupole contributions to the transition moments. We generate a spectroscopic map of the iron 3d orbitals from our TD-DFT results and determine ligand field splitting energies of 1.55 and 1.35 eV for the HS and HSA complexes, respectively. We investigate the use of different functionals finding that hybrid functionals (such as PBE0) produce the best results. Finally, we provide a detailed comparison of our results with theoretical methods that have been previously used to interpret Fe K-edge spectroscopy of equilibrium and time-resolved SCO complexes.  相似文献   

3.
In recent years, a number of high-valent iron intermediates have been identified as reactive species in iron-containing metalloproteins. Inspired by the interest in these highly reactive species, chemists have synthesized Fe(IV) and Fe(V) model complexes with terminal oxo or nitrido groups, as well as a rare example of an Fe(VI)-nitrido species. In all these cases, X-ray absorption spectroscopy has played a key role in the identification and characterization of these species, with both the energy and intensity of the pre-edge features providing spectroscopic signatures for both the oxidation state and the local site geometry. Here we build on a time-dependent DFT methodology for the prediction of Fe K- pre-edge features, previously applied to ferrous and ferric complexes, and extend it to a range of Fe(IV), Fe(V) and Fe(VI) complexes. The contributions of oxidation state, coordination environment and spin state to the spectral features are discussed. These methods are then extended to calculate the spectra of the heme active site of P450 Compound II and the non-heme active site of TauD. The potential for using these methods in a predictive manner is highlighted.  相似文献   

4.
The active site for hydrogen production in [FeFe] hydrogenase comprises a diiron unit. Bioinorganic chemistry has modeled important features of this center, aiming at mechanistic understanding and the development of novel catalysts. However, new assays are required for analyzing the effects of ligand variations at the metal ions. By high-resolution X-ray absorption spectroscopy with narrow-band X-ray emission detection (XAS/XES = XAES) and density functional theory (DFT), we studied an asymmetrically coordinated [FeFe] model complex, [(CO)(3)Fe(I)1-(bdtCl(2))-Fe(I)2(CO)(Ph(2)P-CH(2)-NCH(3)-CH(2)-PPh(2))] (1, bdt = benzene-1,2-dithiolate), in comparison to iron-carbonyl references. Kβ emission spectra (Kβ(1,3), Kβ') revealed the absence of unpaired spins and the low-spin character for both Fe ions in 1. In a series of low-spin iron compounds, the Kβ(1,3) energy did not reflect the formal iron oxidation state, but it decreases with increasing ligand field strength due to shorter iron-ligand bonds, following the spectrochemical series. The intensity of the valence-to-core transitions (Kβ(2,5)) decreases for increasing Fe-ligand bond length, certain emission peaks allow counting of Fe-CO bonds, and even molecular orbitals (MOs) located on the metal-bridging bdt group of 1 contribute to the spectra. As deduced from 3d → 1s emission and 1s → 3d absorption spectra and supported by DFT, the HOMO-LUMO gap of 1 is about 2.8 eV. Kβ-detected XANES spectra in agreement with DFT revealed considerable electronic asymmetry in 1; the energies and occupancies of Fe-d dominated MOs resemble a square-pyramidal Fe(0) for Fe1 and an octahedral Fe(II) for Fe2. EXAFS spectra for various Kβ emission energies showed considerable site-selectivity; approximate structural parameters similar to the crystal structure could be determined for the two individual iron atoms of 1 in powder samples. These results suggest that metal site- and spin-selective XAES on [FeFe] hydrogenase protein and active site models may provide a powerful tool to study intermediates under reaction conditions.  相似文献   

5.
A systematic series of high-spin mononuclear Mn(II), Mn(III), and Mn(IV) complexes has been investigated by manganese Kβ X-ray emission spectroscopy (XES). The factors contributing to the Kβ main line and the valence to core region are discussed. The Kβ main lines are dominated by 3p-3d exchange correlation (spin state) effects, shifting to lower energy upon oxidation of Mn(II) to Mn(III) due to the decrease in spin state from S = 5/2 to S = 2, whereas the valence to core region shows greater sensitivity to the chemical environment surrounding the Mn center. A density functional theory (DFT) approach has been used to calculate the valence to core spectra and assess the contributions to the energies and intensities. The valence spectra are dominated by manganese np to 1s electric dipole-allowed transitions and are particularly sensitive to spin state and ligand identity (reflected primarily in the transition energies) as well as oxidation state and metal-ligand bond lengths (reflected primarily in the transition intensities). The ability to use these methods to distinguish different ligand contributions within a heteroleptic coordination sphere is highlighted. The similarities and differences between the current Mn XES study and previous studies of Fe XES investigations are discussed. These findings serve as an important calibration for future applications to manganese active sites in biological and chemical catalysis.  相似文献   

6.
The local and global structural changes of cytochrome c induced by urea in aqueous solution have been studied using X-ray absorption spectroscopy (XAS) and small-angle X-ray scattering (SAXS). According to the XAS result, both the native (folded) protein and the unfolded protein exhibit the same preedge features taken at Fe K-edge, indicating that the Fe(III) in the heme group of the protein maintains a six-coordinated local structure in both the folded and unfolded states. Furthermore, the discernible differences in the X-ray absorption near-edge structure (XANES) of these two states are attributed to a possible spin transition of the Fe(III) from a low-spin state to a high-spin state during the unfolding process. The perseverance of six-coordination and the spin transition of the iron are reconciled by a proposed ligand exchange, with urea and water molecules replacing the methionine-80 and histidine-18 axial ligands, respectively. The SAXS result reveals a significant morphology change of cytochrome c from a globular shape of a radius of gyration R(g) = 12.8 A of the native protein to an elongated ellipsoid shape of R(g) = 29.7 A for the unfolded protein in the presence of concentrated urea. The extended X-ray absorption fine structure (EXAFS) data unveil the coordination geometries of Fe(III) in both the folded and unfolded state of cytochrome c. An initial spin transition of Fe(III) followed by an axial ligand exchange, accompanied by the change in the global envelope, is proposed for what happened in the protein unfolding process of cytochrome c.  相似文献   

7.
The local electronic structure of Fe(III) and Fe(II) ions in different alcohol solutions (methanol, ethanol, propan-1-ol) is investigated by means of soft X-ray absorption spectroscopy at the iron L 2,3-edge. The experimental spectra are compared with ligand field multiplet simulations. The solvated Fe(III) complex is found to exhibit octahedral symmetry, while a tetragonal symmetry is observed for Fe(II). A decrease in the solvent polarity increases the charge transfer from the oxygen of the alcohol to the iron ions. This conclusion is supported by Hartree-Fock calculations of the Mulliken charge distribution on the alcohols. A larger charge transfer is further observed from the solvent to Fe(III) compared to Fe(II), which is connected to the higher positive charge state of the former. Finally, iron ions in solution are found to prefer the high-spin configuration irrespective of their oxidation state.  相似文献   

8.
Two tetranuclear Mn complexes with an average Mn oxidation state of +2.5 have been prepared. These valence isomers have been characterized by a combination of X-ray crystallography, X-ray absorption spectroscopy, and magnetic susceptibility. The Mn(II)3Mn(IV) tetramer has the Mn ions arranged in a distorted tetrahedron, with an S = 6 ground spin state, dominated by ferromagnetic exchange among the manganese ions. The Mn(II)2Mn(III)2 tetramer also has a distorted tetrahedral arrangement of Mn ions but shows magnetic behavior, suggesting that it is a single-molecule magnet. The X-ray absorption near-edge structure (XANES) spectra for the two complexes are similar, suggesting that, while Mn XANES has sufficient sensitivity to distinguish between trinuclear valence isomers (Alexiou et al. Inorg. Chem. 2003, 42, 2185), similar distinctions are difficult for tetranuclear complexes such as that found in the photosynthetic oxygen-evolving complex.  相似文献   

9.
The contribution of a 3d(4) spin configuration to the valence electronic structure of Fe compounds can be probed via spin-selective Fe K-pre-edge absorption spectra, using resonant inelastic X-ray scattering (RIXS). The 3d(4) configuration of Fe(IV) can be unequivocally detected even in a mixture with the high-spin 3d(5) configuration of Fe(III). This is demonstrated on the perovskite FeSrO(3-x) with formal oxidation state Fe(IV). When the technique was applied to an Fe-ZSM-5 catalyst during reaction with N(2)O, no 3d(4) configuration was detected. The formation of Fe(IV) upon reaction of Fe-ZSM-5 with N(2)O can, therefore, be ruled out.  相似文献   

10.
The synthesis, solution and solid state structural characterization, photophysical and electrochemical properties of two redox forms of an electrochromic copper-bis(4,4′-dimethyl-6,6′-diphenyl-2,2′-bipyridine) complex, [Cu(3)2]n (n=+1, +2), are presented. Both complexes were characterized in the solid state by X-ray diffraction methods on single-crystals showing that both forms exist in a pseudo-tetrahedral coordination, and a comparison with other structures was made. Like most copper(I) complexes, the red [Cu(3)2]+ complex shows a rather weak emission (Φem=2.7×10−4, dichloromethane). The lifetime of the emitting MLCT state is 34±1 ns, as observed with time resolved emission, and transient absorption (in deoxygenated dichloromethane). Typical emission and transient absorption spectra are presented. The transient absorption spectra indicate that the MLCT state absorbs stronger than the ground state, which is relatively uncommon for metal bipyridine complexes, i.e. no ground state bleaching is observed. The green [(3)2Cu]2+ complex does not show any observable emission or transient absorption, which is a common feature for Cu(II) complexes of this type. The electronic absorption spectra of the chemically and electrochemically produced copper(I/II) complexes are identical. The repeated electrochemical conversion of the Cu(I) center into Cu(II) and vice versa does not cause any decomposition. This is consistent with a fully reversible Cu(I)/Cu(II) redox couple in the corresponding cyclic voltammogram, (E1/2 (Cu(I)/Cu(II))=+0.68 V vs. SCE=+0.23 V vs. Fc/Fc+). These observations indicate that no large structural reorganization occurs upon electrochemical timescales (sub second), and that the different ways of generating the complexes does not effect their final structure, apart from the small differences observed in the X-ray structures of both forms. These characteristics make these complexes rather well suited for their incorporation into an electrochromic display configuration.  相似文献   

11.
《Chemical physics letters》1987,136(5):478-482
X-ray absorption near-edge structure, X-ray Ni Kβ emission, X-ray photoelectron Ni 2p, and optical spectra are reported for NiM2O4 spinels (M = Al,Cr,Ga,Fe,Mn). The characteristic parameters of the Ni(II)-O chemical bond may be correlated with the structural properties (cation repartition and charge distribution).  相似文献   

12.
A new family of spin crossover complexes, [Fe(II)H(3)L(Me)](NO(3))(2).1.5H(2)O (1), [Fe(III)L(Me)].3.5H(2)O (2), [Fe(II)H(3)L(Me)][Fe(II)L(Me)]NO(3) (3), and [Fe(II)H(3)L(Me)][Fe(III)L(Me)](NO(3))(2) (4), has been synthesized and characterized, where H(3)L(Me) denotes a hexadentate N(6) tripod ligand containing three imidazole groups, tris[2-(((2-methylimidazol-4-yl)methylidene)amino)ethyl]amine. It was found that the spin and oxidation states of the iron complexes with this tripod ligand are tuned by the degree of deprotonation of the imidazole groups and by the 2-methyl imidazole substituent. Magnetic susceptibility and M?ssbauer studies revealed that 1 is an HS-Fe(II) complex, 2 exhibits a spin equilibrium between HS and LS-Fe(III), 3 exhibits a two-step spin transition, where the component [Fe(II)L(Me)](-) with the deprotonated ligand participates in the spin transition process in the higher temperature range and the component [Fe(II)H(3)L(Me)](2+) with the neutral ligand participates in the spin transition process in the lower temperature range, and 4 exhibits spin transition of both the Fe(II) and Fe(III) sites. The crystal structure of 3 consists of homochiral extended 2D puckered sheets, in which the capped tripodlike components [Fe(II)H(3)L(Me)](2+) and [Fe(II)L(Me)](-) are alternately arrayed in an up-and-down mode and are linked by the imidazole-imidazolate hydrogen bonds. Furthermore, the adjacent 2D homochiral sheets are stacked in the crystal lattice yielding a conglomerate as confirmed by the enantiomeric circular dichorism spectra. Compounds 3 and 4 showed the LIESST (light induced excited spin state trapping) and reverse-LIESST effects upon irradiation with green and red light, respectively.  相似文献   

13.
Electronic absorption and resonance Raman (RR) spectra are reported for hydroxide and aqua complexes of iron(II)-protoporphyrin IX (Fe(II)PP) respectively formed in alkaline and neutral aqueous solutions. These compounds with weak axial ligand(s) represent a biomimetic approach of the unusual coordination of the atypical heme c(i) of membrane cytochrome b6f complexes. Absorption spectra and spectrophotometric titrations show that Fe(II)PP in alkaline aqueous cetyltrimethylammonium bromide (CTABr) binds one hydroxide ion, forming a five-coordinated high-spin (HS) complex. In alkaline aqueous ethanol, we confirm the formation of a dihydroxy complex of Fe(II)PP. In the RR spectra of Fe(II)PP dissolved in neutral aqueous CTABr, a mixture of a four-coordinated intermediate spin form with an HS monoaqua complex (Fe(II)PP(H2O)) was observed. The spectroscopic information obtained for Fe(II)PP(OH-), Fe(II)PP(H2O), and Fe(II)PP(OH-)2 was compared with that previously reported for the 2-methylimidazole and 2-methylimidazolate complexes of Fe(II)PP, representative of the most common axial ligation in HS heme proteins. This investigation reveals a very remarkable analogy in the spectral properties of, in one hand, the Fe(II)PP(H2O) and mono-2-methylimidazole complexes and, in the other hand, the Fe(II)PP(OH-) and mono-2-methylimidazolate complexes. The comparisons of the absorption and RR spectra of Fe(II)PP(OH-) and Fe(II)PP(OH-)2 clearly establish that both a redshift of the pi-pi electronic transitions and an upshift of the v8 RR frequency are spectral parameters indicative of porphyrin doming in HS ferrous complexes. Based upon isotopic substitutions (16OH-,16OD-, and 18OH-), stretching modes of the Fe-OH bond(s) of a ferrous porphyrin were assigned for the first time, i.e., at 435 cm(-1) for Fe(II)PP(OH-) (nu(Fe(II)-OH-)) and at 421 cm(-1) for Fe(II)PP(OH-)2 (nu(s)(Fe(II)-(OH-)2). The spectroscopic and redox properties of Fe(II)PP(H2O), Fe(II)PP(OH-), and heme c(i) were discussed and favor a water coordination for the heme c(i) iron.  相似文献   

14.
The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.  相似文献   

15.
A quantitative analysis is presented for the site-selective Fe K-edge absorption spectra of Prussian Blue: Fe(4)[Fe(CN)(6)](3) x xH(2)O (x = 14-16). The site-selective spectra were recorded using high-resolution fluorescence detection of the K beta emission from a polycrystalline sample. The K beta fluorescence lines arising from the high-spin and low-spin sites are shifted in energy. Since the emission features partially overlap, fluorescence-detected absorption spectra using different emission energies represent different linear combinations of the pure high-spin and low-spin EXAFS. A numerical method was used to extract the individual site EXAFS spectra from the experimental data. The analysis yields a range of solutions. A unique solution can be obtained if homovalent model compounds are used to simulate the K beta fluorescence emission from the two Fe sites in Prussian Blue. EXAFS analysis of the range of spectra obtained in the numerical method yields almost identical interatomic distances for the different spectra while the Debye-Waller factors vary considerably. The distances obtained in the EXAFS fit correspond to the crystallographic distances.  相似文献   

16.
Ab initio calculations have been performed on Fe (II) (tz) 6 (tz = 1- H-tetrazole) to establish the variation of the energy of the electronic states relevant to (reverse) light-induced excited-state spin trapping (LIESST) as function of the Fe-ligand distance. Equilibrium distances and absorption energies are correctly reproduced. The deactivation of the excited singlet is proposed to occur in the Franck-Condon region through overlap of vibrational states with an intermediate triplet state or an intersystem crossing along an asymmetric vibrational mode. This is followed by an intersystem crossing with the quintet state. Reverse LIESST involves a quintet-triplet and a triplet-singlet intersystem crossing around the equilibrium distance of the high-spin state. The influence of the transition metal is studied by changing Fe (II) for Co (II), Co (III), and Fe (III). The calculated curves for Fe (III) show remarkable similarity with Fe (II), indicating that the LIESST mechanism is based on the same electronic conversions in both systems.  相似文献   

17.
The reaction of [Fe(II)(BF(4))(2)]·6H(2)O with the nitroxide radical, 4,4-dimethyl-2,2-di(2-pyridyl) oxazolidine-N-oxide (L(?)), produces the mononuclear transition metal complex [Fe(II)(L(?))(2)](BF(4))(2) (1) which has been investigated using temperature dependent susceptibility, Mo?ssbauer spectroscopy, electrochemistry, density functional theory (DFT) calculations, and X-ray structure analysis. Single crystal X-ray diffraction analysis and Mo?ssbauer measurements reveal an octahedral low spin Fe(2+) environment where the pyridyl donors from L(?) coordinate equatorially while the oxygen containing the radical from L(?) coordinates axially forming a linear O(?)··Fe(II)··O(?) arrangement. Magnetic susceptibility measurements show a strong radical-radical intramolecular antiferromagnetic interaction mediated by the diamagnetic Fe(2+) center. This is supported by DFT calculations which show a mutual spatial overlap of 0.24 and a spin density population analysis which highlights the antiparallel spin alignment between the two ligands. Similarly the monocationic complex [Fe(III)(L(-))(2)](BPh(4))·0.5H(2)O (2) has been fully characterized with Fe-ligand and N-O bond length changes in the X-ray structure analysis, magnetic measurements revealing a Curie-like S = 1/2 ground state, electron paramagnetic resonance (EPR) spectra, DFT calculations, and electrochemistry measurements all consistent with assignment of Fe in the (III) state and both ligands in the L(-) form. 2 is formed by a rare, reductively induced oxidation of the Fe center, and all physical data are self-consistent. The electrochemical studies were undertaken for both 1 and 2, thus allowing common Fe-ligand redox intermediates to be identified and the results interpreted in terms of square reaction schemes.  相似文献   

18.
The thermal and light induced spin transition in [Fe(0.35)Ni(0.65)(mtz)(6)](ClO(4))(2) (mtz = 1-methyl-1H-tetrazole) was studied by (57)Fe M?ssbauer spectroscopy and magnetic susceptibility measurements. In addition to the spin transition of the iron(II) complexes the compound undergoes a structural phase transition. The high-temperature structure could be determined by X-ray crystallography of the isomorphous [Fe(0.25)Ni(0.75)(mtz)(6)](ClO(4))(2) complex at room temperature. The X-ray structural analysis shows this complex to be rhombohedric, space group R&thremacr;, with a = 10.865(2) ? and c = 23.65(1) ? with three molecules in the unit cell. The transition to the low-temperature structure occurs at approximately 60 K without changing the spin state of the molecules. By subsequent heating of the complex the high-temperature structure is reached again between ca. 170 and 200 K. The spin transition behavior is strongly influenced by the structural changes, and the observed spin transition curves are completely different for the high- and low-temperature phases. In the high-temperature structure a complete and gradual spin transition between 220 and 120 K (T(1/2)(gamma(HS) = 0.5) = 185 K) is detected; the high-spin (HS) state is represented by one HS doublet in the M?ssbauer spectra. In the low-temperature structure a two-step transition curve is detected in the heating mode. About 36% of the molecules show a LS (low-spin) --> HS transition between ca 50 and 75 K. Then the HS fraction stays constant up to 150 K. A further increase in the high-spin fraction is observed at temperatures above 150 K. In this structural phase the HS state is represented by two different HS doublets in the M?ssbauer spectra. The formation of metastable HS states by making use of the LIESST effect is only possible in the low-temperature structure. By excitation of the LS molecules with green light, two different HS states are populated which show very different relaxation behavior. One HS state shows a relaxation to the LS state even at 10 K; the other HS state shows a very slow HS --> LS relaxation at 60 K (within days), leading to the HS fraction corresponding to the thermal equilibrium value.  相似文献   

19.
We show that X-ray magnetic circular dichroism (XMCD) can be employed to probe the oxidation states and other electronic structural features of nickel active sites in proteins. As a calibration standard, we have measured XMCD and X-ray absorption (XAS) spectra for the nickel(II) derivative of Pseudomonas aeruginosa azurin (NiAz). Our analysis of these spectra confirms that the electronic ground state of NiAz is high-spin (S = 1); we also find that the L(3)-centroid energy is 853.1(1) eV, the branching ratio is 0.722(4), and the magnetic moment is 1.9(4) mu(B). Density functional theory (DFT) calculations on model NiAz structures establish that orbitals 3d(x2-y2) and 3d(z2) are the two valence holes in the high-spin Ni(II) ground state, and in accord with the experimentally determined orbital magnetic moment, the DFT results also demonstrate that both holes are highly delocalized, with 3d(x2-y2) having much greater ligand character.  相似文献   

20.
A full quantitative analysis of Fe K-edge X-ray absorption spectra has been performed for hemes in two porphynato complexes, that is, iron(III) tetraphenylporphyrin chloride (Fe(III)TPPCl) and iron(III) tetraphenylporphyrin bis(imidazole) (Fe(III)TPP(Imid)2), in two protein complexes whose X-ray structure is known at atomic resolution (1.0 A), that is, ferrous deoxy-myoglobin (Fe(II)Mb) and ferric aquo-myoglobin (Fe(III)MbH2O), and in ferric cyano-myoglobin (Fe(III)MbCN), whose X-ray structure is known at lower resolution (1.4 A). The analysis has been performed via the multiple scattering approach, starting from a muffin tin approximation of the molecular potential. The Fe-heme structure has been obtained by analyzing independently the Extended X-ray Absorption Fine Structure (EXAFS) region and the X-ray Absorption Near Edge Structure (XANES) region. The EXAFS structural results are in full agreement with the crystallographic values of the models, with an accuracy of +/- 0.02 A for Fe-ligand distances, and +/-6 degrees for angular parameters. All the XANES features above the theoretical zero energy (in the lower rising edge) are well accounted for by single-channel calculations, for both Fe(II) and Fe(III) hemes, and the Fe-N p distance is determined with the same accuracy as EXAFS. XANES evaluations of Fe-5th and Fe-6th ligand distances are determined with 0.04-0.07 A accuracy; a small discrepancy with EXAFS (0.01 to 0.05 A beyond the statistical error), is found for protein compounds. Concerns from statistical correlation among parameters and multiple minima in the parameter space are discussed. As expected, the XANES accuracy is slightly lower than what was found for polarized XANES on Fe(III)MbCN single crystal (0.03-0.04 A), and states the actual state-of-the-art of XANES analysis when used to extract heme-normal parameters in a solution spectrum dominated by heme-plane scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号