首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Literature [Denayer et al. Microporous Mesoporous Mater. 2007, 103, 1 and Denayer et al. Microporous Mesoporous Mater. 2007, 103, 11] shows that zeolite NaX exchanged with Ca(2+) and Co(2+) ions is able to remove cyclopentadiene (CPD) impurities from a 1-octene feed with high selectivity. In the present work, the adsorption of dicyclopentadiene (DCPD), CPD, 1-octene, and n-octane on zeolite X, exchanged with Ca(2+) and/or Co(2+) ions, has been investigated via (1)H magic-angle spinning (MAS) NMR spectroscopy. The liquid adsorbate was dosed under inert atmosphere in an MAS rotor filled with dry adsorbent, at a pore filling degree of 70%. Next, the evolution in time was recorded of the (1)H MAS NMR spectrum and the (1)H spin-lattice and spin-spin relaxation times of the adsorbed components. For the various adsorbate-adsorbent systems, a plot is made of the signal intensity versus the square root of the contact time. It is found that, over the considered time interval, Fickian diffusion takes place. On the basis of the change in time of the spin-lattice relaxation time, a transport diffusion coefficient ranging between 1 and 2 x 10(-15) m(2) x s(-1) is calculated. Moreover, there appear to be two sorption regimes, with different diffusivities. A comparison is made between the (1)H spin-lattice relaxation behavior of DCPD, 1-octene, and n-octane, indicating that 1-octene and n-octane are located closer to the paramagnetic ions than DCPD. The average distance between the adsorbate molecules and the paramagnetic ions is derived from relaxometric data. By analyzing the chemical shifts of the resonance lines, it is found that the pi-interaction of CPD and 1-octene is stronger than that of DCPD.  相似文献   

2.
The hydrogen adsorption properties and uptake capacities of the A, X and ZSM-5 types of zeolites were investigated at temperatures of 77, 195 and 293 K and pressures up to 7MPa, using a conventional volumetric adsorption apparatus. All hydrogen adsorption isotherms were basically type I, but the maximum in isotherm,a unique feature of supercritical adsorption, was observed at high pressures of 2-5 MPa at 77 K. The isosteric heats of adsorption were determined from the isotherms and the factors that influence their variations were discussed. Different types of zeolites exhibited remarkably different hydrogen uptake, based on both the framework structure and the nature of the cations present. The highest gravimetric storage capacity of 2.55wt% was obtained for NaX-type zeolite at 4 MPa and 77 K. In CaA, NaX and ZSM-5 types of zeolites,hydrogen uptakes were proportional to the specific surface areas, which were associated with the available void volumes of the zeolites. A threshold in hydrogen adsorption observed in NaA and KA was attributed to a pore blocking effect by large cations in KA. A ratio of the kinetic diameter of adsorbate to the effective opening diameter of zeolite was used to judge the blocking effect for physisorption.  相似文献   

3.
Adsorption of carbon dioxide by X zeolites exchanged with bivalent cations. The adsorption of carbon dioxide by X zeolites exchanged by Mg2+, Sr2+, Zn2+ and Cu2+ cations was studied by thermogravimetry. The corresponding isosteric heats of adsorption decrease with the filling of pore volume, except for Cu(63)X. This evolution of the heat indicates a specific interaction between cations present within supercages and CO2 molecules. Several models have been used in order to describe the experimental isotherms. The best fit of sorption isotherm data was obtained with the Sips model.  相似文献   

4.
Our improved Horvath-Kawazoe (H-K) equations (by considering the isotherm nonlinearity) for three pore geometries are first summarized. These equations apply to adsorption in microporous materials at subcritical temperatures. From a known isotherm at a given temperature, these equations are used to predict isotherms of the same adsorbate molecules at other temperatures, and also to predict isotherms for other adsorbate molecules at the same (or any subcritical) temperature. A reasonable agreement is obtained between predictions and experimental data. Since the H-K formulation only involves dispersion forces, it underpredicts for gas-solid systems in which other forces also exist. The N2-zeolite system is one of these systems.  相似文献   

5.
6.
Nanoporous layered double hydroxide (LDH) materials have wide applications, ranging from being good adsorbents for gases (particularly CO(2)) and liquid ions to membranes and catalysts. They also have applications in medicine, environmental remediation, and electrochemistry. Their general chemical composition is [M(1-x)(II)M(x)(III)(OH(-))(2)](x+)[X(nm)(m-)nH(2)O], where M represents a metallic cation (of valence II or III), and X(nm)(m-) is an m-valence inorganic, or heteropolyacid, or organic anion. We study diffusion and adsorption of CO(2) in a particular LDH with M(II)=Mg, M(III)=Al, and x approximately = 0.71, using an atomistic model developed based on energy minimization and molecular dynamics simulations, together with a modified form of the consistent-valence force field. The adsorption isotherms and self-diffusivity of CO(2) in the material are computed over a range of temperature, using molecular simulations. The computed diffusivities are within one order of magnitude of the measured ones at lower temperatures, while agreeing well with the data at high temperatures. The measured and computed adsorption isotherms agree at low loadings, but differ by about 25% at high loadings. Possible reasons for the differences between the computed properties and the experimental data are discussed, and a model for improving the accuracy of the computed properties is suggested. Also studied are the material's hydration and swelling properties. As water molecules are added to the pore space, the LDH material swells to some extent, with the hydration energy exhibiting interesting variations with the number of the water molecules added. The implications of the results are discussed.  相似文献   

7.
The adsorption of Co2+, Ni2+, Cu2+, and Zn2+ onto amorphous hydrous manganese dioxide (delta-MnO2) has been studied using two methods, viz., isotherms at constant pH in the presence of buffer solution and pH variation in the absence of buffer solution from a fixed metal ion concentration. While the adsorption isotherm experiments were carried out in 0.5 M NaCl only, pH variation or batch titration experiments were carried out in 0.5 M NaCl, 0.01 M NaCl, and 0.01 M KNO3 solutions. The complex nature of adsorption isotherms at constant pH values indicates that adsorption of all the cations is non-Langmuirian (Freundlich) and takes place on the highly heterogeneous oxide surface with different binding energies. The proton stoichiometry derived from isotherms at two close pH values varies between 0.3 and 0.8. The variation of fractional adsorption with pH indicates that the background electrolyte solution influences the adsorption of cations through either metal-like or ligand-like complexes with Cl-, the former showing a low adsorption tendency. The proton stoichiometry values derived from the Kurbatov-type plot varies not only with the electrolyte solution but also with the adsorbate/adsorbent ratio. The variation of fractional adsorption with pH can be modeled either with the formation of the SOM+ type or with a combination of SOM+ and SOMOH type complexes, depending upon the cation and electrolyte medium. The equilibrium constants obtained from Kurbatov-type plots are found to be most suitable in these model calculations. Adsorption calculated on the basis of ternary surface metal-chlorocomplex formation exhibits very low values.  相似文献   

8.
We present predictions of reaction rate constants for dissociative adsorption reactions of CO(x) (x = 1, 2) and NO(x) (x = 1, 2) molecules on the basal graphite (0001) surface based on potential energy surfaces (PES) obtained by the integrated ONIOM(B3LYP:DFTB-D) quantum chemical hybrid approach with dispersion-augmented density functional tight binding (DFTB-D) as low level method. Following an a priori methodology developed in a previous investigation of water dissociative adsorption reactions on graphite, we used a C(94)H(24) dicircumcoronene graphene slab as model system for the graphite surface in finite-size molecular structure investigations, and single adsorbate molecules reacting with the pristine graphene sheet. By employing the ONIOM PES information in RRKM theory we predict reaction rate constants in the temperature range between 1,000 and 5,000 K. We find that among CO(x) and NO(x) adsorbate species, the dissociative adsorption reactions of CO(2) and both radical species NO and NO(2) are likely candidates as a cause for high temperature oxidation and erosion of graphite (0001) surfaces, whereas reaction with CO is not likely to lead to long-lived surface defects. High temperature quantum chemical molecular dynamics simulations (QM/MD) at T = 5,000 K using on-the-fly DFTB-D energies and gradients confirm the results of our PES study.  相似文献   

9.
D.V. Cao  S. Sircar 《Adsorption》2001,7(1):73-80
The isotherms and the isosteric heats of adsorption of pure SF6 were measured on two microporous zeolites (NaX and Silicalite), one mesoporous alumina, and two activated carbons (BPL and PCB) at 305 K. The adsorption isotherms were Type I by Brunauer classification. The PCB carbon adsorbed SF6 most strongly and the alumina adsorbed SF6 most weakly. The adsorption of SF6 on the other three materials were comparable in the low pressure region despite their drastic differences in the physicochemical properties. The heat of adsorption of SF6 on the silicalite and the alumina remained practically constant over a large range of coverage. The heat of adsorption of SF6 increased with increasing adsorbate loading on the NaX zeolite in the high coverage region. The heat of adsorption of SF6 on the activated carbons decreased with increasing adsorbate loading before leveling off in the high coverage region.  相似文献   

10.
The adsorption isotherms of Xe vapor at 196 K and supercritical Xe at 300 K on activated carbon fibers of different pore widths were gravimetrically measured. The adsorption isotherms of Xe vapor were compared with the N(2) adsorption isotherms. A Dubinin-Radushkevich (DR) plot of the adsorption isotherms of Xe vapor showed a good linearity, indicating that Xe vapor is adsorbed by the representative micropore filling mechanism. The adsorption isotherms of supercritical Xe were approximated by the Langmuir equation. The saturated adsorption amounts of supercritical Xe, W(L), were in the range of 0.14 to 0.22 ml g(-1). The adsorption isotherms of supercritical Xe were described by the supercritical DR equation, which provides the quasisaturated vapor pressure P(0q). Both P(0q) and W(L) lead to the reduced isotherm, which can describe three isotherms. The obtained reduced isotherm derived from the isotherms of supercritical Xe could describe even those of Xe vapor. Hence, both Xe vapor and supercritical Xe should be adsorbed by the same mechanism. The isosteric heat of Xe adsorption was greater than the enthalpy of vaporization of Xe by more than 12 kJ mol(-1). These results suggest that Xe molecules are stabilized in the form of a cluster in micropores even at 300 K. Copyright 2000 Academic Press.  相似文献   

11.
Adsorption of supercritical carbon dioxide on two kinds of zeolites with identical chemical composition but different pore structure (NaA and NaX) was studied using the Gibbs ensemble Monte Carlo simulation. The model frameworks for the two zeolites with SiAl ratio being unity have been chosen as the solid structures in the simulation. The adsorption behaviors of supercritical CO2 on the NaA and NaX zeolites, based on the adsorption isotherms and isosteric heats of adsorption, were discussed in detail and were compared with the available experimental results. A good agreement between the simulated and experimental results is obtained for both the adsorbed amount and the bulk phase density. The intermediate configurational snapshots and the radial distribution functions between zeolite and adsorbed CO2 molecules were collected in order to investigate the preferable adsorption locations and the confined structure behavior of CO2. The structure behaviors of the adsorbed CO2 molecules show various performances, as compared with the bulk phase, due to the confined effect in the zeolite pores.  相似文献   

12.
曾宇  钱斌  龙英才 《化学学报》2001,59(9):1389-1395
测定不同温度下三种氯氟烃F-11(CFCl3),F-12(CF2Cl2)和F-22(CHF2Cl)在疏水高硅MFI和FAU沸石上的吸附等温线,以研究其吸附热效应。根据Clapeyron-Clausius方程,由吸附等温线,计算不同覆盖度C的等量吸附热Qst(C)和平均吸附热Qst^*(△Ha)。上述吸附质在两种沸石上吸附热的大小顺序均为:△Ha(MFI)>△Ha(FAU)。在同种沸石上,吸附热的大小顺序为:△Ha(F-11)>△Ha(F-12)>△Ha(F-22).298K时的吸附等温线和△Ha的变化趋势显示,对能允许氯氟烃分子自由进出其孔道的FAU沸石,吸附质分子越大,低分压吸附量(V)越大,吸附热(△Ha)也越大。而孔道对吸附质分子有空间限制作用的MFI沸石,其吸附热、分子尺寸与饱和吸附量(Vm)间关系比较复杂。选择去除氯氟烃的沸石吸附剂应综合考虑△Ha与饱和吸附容量Vm。  相似文献   

13.
The ionic exchange of the NaX zeolite by Ni2+ and Cr3+ cations was progressively driven and studied by adsorption of nitrogen and carbon dioxide. For each cation-exchanged X zeolite sample, the development of characteristics such as profile of isotherms, RI criterion, isosteric adsorption heat and microporous volume using both the Dubinin–Radushkevich (DR) equation and the t-plot, was followed through the nitrogen adsorption. Results show that the cationic exchange process, in the case of Cr3+ introduced at middle degree, is accompanied by a textural damage for Cr(x)X, in contrast to Ni2+-exchanged X zeolites. This degradation occurs without significant presence of mesopores, because the RI criterion values were found to be much lower than 2.2. The CO2 adsorption isotherms were measured at intervals of 30 K from 273 K and the equilibrium pressures ranged from 0.5 to 600 Torr. The experimental data were correlated by the Toth model. The associated three adjustable parameters were estimated by nonlinear least-squares analysis. The effect of temperature on the model parameters and the Henry’s law slope, K H , represented by the product of Toth parameters, are discussed.  相似文献   

14.
Recently, it has been shown that adsorption of gases on solid surfaces often leads to repulsive forces between adsorbate molecules. In this paper, adsorption of molecules on a one-dimensional lattice is considered for repulsive interactions between adsorbate molecules. Exact adsorption isotherms are calculated and analyzed for finite and infinite chains of active sites (i.e., a one-dimensional lattice). Although the mathematical solution for the one-dimensional lattice is known for attractive and repulsive systems, the effects of intermolecular repulsions on adsorption behavior have not been studied in detail previously. Similarly, though the mathematics for the one-dimensional lattice has been solved for any arbitrary lattice length, the effect of finite size on adsorption isotherms for repulsive adsorbate interactions has never been examined. This paper shows that spatial confinement and strong attraction to active sites can cause compression of an adsorbed phase and that repulsive interactions between adsorbed molecules result in steps in the adsorption isotherms. For higher chemical potentials, the density increases until saturating at the lattice capacity. These steps in the adsorption isotherm have not been observed in previous studies of lattice systems. For small lattices, the adsorption behavior was found to be fundamentally different for even and odd values of lattice length. Lattices with an even number of lattice sites can have two steps in the adsorption isotherm, whereas systems with an odd number of sites only have a single step occurring at a coverage slightly greater than half the lattice capacity.  相似文献   

15.
Zeolite NaX (commonly known as zeolite 13X) has found wide use in industry for the separation of carbon dioxide from air, methane-containing landfill gas, and flue gases. Capture and sequestration of carbon dioxide has become of utmost importance to mitigate severe environmental problems associated to burning of fossil fuels, such as the greenhouse effect and the consequential warming of global climate. Due to its low energy consumption and ease of operation, the zeolite-13X molecular-sieve pressure-swing adsorption process has become the method of choice for the recovery and capture of carbon dioxide from air and flue gas. Accurate correlation of the equilibrium adsorption isotherms of carbon dioxide in zeolite NaX is required for the reliable modeling and simulation of that process. In this paper, we firstly show that none of the traditional adsorption isotherm models (such as those of Langmuir, Sips, Toth, UNILAN, and Dubinin–Astakhov) is entirely capable of correlating a published set of equilibrium adsorption isotherms of carbon dioxide in zeolite NaX that were measured over a range of eight decades of pressure. A generalized statistical thermodynamic adsorption (GSTA) model, which we had already derived and successfully applied to the adsorption of water vapor in zeolite 3A, is employed in this work to obtain a very accurate correlation of that set of adsorption isotherms of carbon dioxide in zeolite NaX, for the pressure range from 0.2 Pa to 6.4 MPa and in the temperature range from −78 to 150 °C. We also provide thermochemical and structural interpretations of the isotherms fit and make predictions for the isosteric heat of adsorption that are in excellent agreement with the available experimental data.  相似文献   

16.
The volumetric hydrogen adsorption isotherms of two isostructural dehydrated cubic metal nitroprussides M[Fe(CN)5NO] (M = Co2+, Ni2+) have been measured up to a pressure of 760 Torr at 77 and 87 K. These materials are among the most efficient H2 sorbents based on porous coordination polymers reported to date. The H2 uptake in both materials is approximately 1.6 wt % at 77 K and 760 torr. These H2 capacities match those reported recently in the structurally related M3[Co(CN)6]2 compounds and are approximately 25% higher than those reported for Zn4O(1,4-benzenedicarboxylate)3 under the same conditions of temperature and pressure. The isosteric heats of H2 adsorption calculated from the 77 and 87 K isotherms for both materials were found to vary from approximately 7.5 kJ/mol at 0.40 wt % coverage to approximately 5.5 kJ/mol at 1.2 wt % coverage. The N2 BET surface areas were determined to be 634 m2/g and 523 m2/g for M = Ni and M = Co, respectively.  相似文献   

17.
巯基树脂对金属离子的吸附性能(Ⅱ)   总被引:3,自引:0,他引:3  
研究了自合成的巯基树脂对重金属离子Ag 、Hg2 、Cr3 的吸附容量、吸附动力学、等温吸附过程等静态吸附性能,影响吸附的因素和吸附机理.结果表明,该树脂对上述3种离子吸附能力强,吸附量分别达6.56mmol/g、3.25mmol/g、2.10mmol/g.树脂对各重金属离子等温吸附在实验浓度范围内符合Langmuir或Freundlich方程.吸附机理研究表明,巯基与金属离子发生了离子交换和配位反应,化学吸附起支配作用;另外树脂对Ag 、Hg2 吸附过程中存在一定的氧化还原现象.  相似文献   

18.
We have measured the adsorption isotherms of water on a single surface of freshly cleaved mica with K+ on the surface, and on mica where the K+ has been exchanged for H+. Using a very sensitive interferometric technique, we have found a significant difference between the two isotherms at submonolayer coverage, for relative vapor pressures p/p0 < 0.5. The K+-mica isotherm shows a pronounced convexity, suggesting distinct adsorption sites, whereas the H+-mica isotherm is flatter. The two isotherms converge above monolayer coverage. The results give a graphic demonstration of the importance of nanoscale surface heterogeneities for vapor adsorption at submonolayer coverage.  相似文献   

19.
严爱珍  吴键  韩玉阁 《化学学报》1993,51(5):451-456
用高真空重量法测定了NaX分子筛对不同吸附质NH3, H2O, C2H5OH等的吸附等温线, 用微孔体积填充理论对吸附等温线进行非线性拟合, 得到满意结果。表明该理论不但可扩展到以静电场为主的吸附体系, 还可适用于吸附温度高于吸附质临界温度的吸附体系。计算结果表明, NaX吸附不同吸附质测得的极限空腔体积基本相同, 且与结构分析得到的空腔体积一致, 进一步表明微孔体积填充理论对该体系的适用性。计算了各种吸附质的极限吸附量, 以及某填充度下的蚊分吸附热随着温度的变化趋势。可为固体吸附式制冷系统的设计与制造提供理论依据及有关掺数。  相似文献   

20.
The synthesis, activation, and heats of CO(2) adsorption for the known members of the M(3)(BTC)(2) (HKUST-1) isostructural series (M = Cr, Fe, Ni, Zn, Ni, Cu, Mo) were investigated to gain insight into the impact of CO(2)-metal interactions for CO(2) storage/separation applications. With the use of modified syntheses and activation procedures, improved BET surface areas were obtained for M = Ni, Mo, and Ru. The zero-coverage isosteric heats of CO(2) adsorption were measured for the Cu, Cr, Ni, Mo, and Ru analogues and gave values consistent with those reported for MOFs containing coordinatively unsaturated metal sites, but lower than for amine functionalized materials. Notably, the Ni and Ru congeners exhibited the highest CO(2) affinities in the studied series. These behaviors were attributed to the presence of residual guest molecules in the case of Ni(3)(BTC)(2)(Me(2)NH)(2)(H(2)O) and the increased charge of the dimetal secondary building unit in [Ru(3)(BTC)(2)][BTC](0.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号