首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The self-assembling structures and dynamics of surfactants determine most of their macroscopic physicochemical properties and performances. Herein, we review recent work on the self-assembly of surfactants by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) in conjunction with cryogenic transmission electron microscopy (Cryo-TEM) from the perspective of researchers having only limited theoretical knowledge of these techniques but expert in surfactants. Emphasis is placed on the structural analysis of typical surfactant aggregates over a wide range of size scales from nanometers up to microns, including spherical and rod-like micelles, wormlike micelles, vesicles, liquid crystals and coacervates, by combining different numerical approaches to the treatment of small-angle scattering data with the direct Cryo-TEM imaging method. Furthermore, the complementarity between SAXS and SANS, and between the scattering techniques and Cryo-TEM, that is, specific contributions of these techniques, is also covered.  相似文献   

2.
3.
Small-angle scattering (SAS) techniques, like small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), were used to measure and thus to validate the accuracy of a novel technology for virus sizing and concentration determination. These studies demonstrate the utility of SAS techniques for use in quality assurance measurements and as novel technology for the physical characterization of viruses.  相似文献   

4.
Spherical micelles of the diblock copolymer/surfactant Brij 700 (C(18)EO(100)) in water (D(2)O) solution have been investigated by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). SAXS and SANS experiments are combined to obtain complementary information from the two different contrast conditions of the two techniques. Solutions in a concentration range from 0.25 to 10 wt % and at temperatures from 10 to 80 degrees C have been investigated. The data have been analyzed on absolute scale using a model based on Monte Carlo simulations, where the micelles have a spherical homogeneous core with a graded interface surrounded by a corona of self-avoiding, semiflexible interacting chains. SANS and SAXS data were fitted simultaneously, which allows one to obtain extensive quantitative information on the structure and profile of the core and corona, the chain interactions, and the concentration effects. The model describes the scattering data very well, when part of the EO chains are taken as a "background"contribution belonging to the solvent. The effect of this becomes non-negligible at polymer concentrations as low as 2 wt %, where overlap of the micellar coronas sets in. The results from the analysis on the micellar structure, interchain interactions, and structure factor effects are all consistent with a decrease in solvent quality of water for the PEO block as the theta temperature of PEO is approached.  相似文献   

5.
Carbon black Corax N330 (hereinafter called CB) is used as a filler in elastomers. The properties of the surface are important for the binding of the elastomer to the carbon black particles. Porod's law requires the intensity to satisfy I(q) approximately q(-alpha) with alpha = 4 for large q. Rieker et al. observed alpha = 3.7 +/- 0.1 for small-angle X-ray scattering (SAXS) data and concluded that the particle surface is fractally rough. Ruland critized this and suggested that the observed deviation is due to fluctuations of the spacing of the graphitic layer planes ("graphenes") which contribute a component I(q)fluc = 1Cflucq(-2) to the intensity component satisfying Porod's law. We studied CB by nitrogen adsorption, high-resolution transmission electron microscopy, synchroton SAXS, and small-angle neutron scattering (SANS). Our SAXS experiments with samples of high transmission (Tr = 0.96) confirmed the form of the scattering curves published by Rieker et al., but the correction for I(q)fluc restored Porod's law. SANS experiments were performed with a sample of low transmission in order to analyze the high q-range for scattering from voids and isolated graphenes. We found I(q) approximately q(-beta) with beta approximately 2 at q > 2.5 nm(-1) and will show that this intensity component requires graphenes consisting of about 12 benzene rings. The contrast matching technique revealed the presence of inaccessible voids. The SANS data for a sample with Tr = 0.363 satisfy Porods law, in contrast to the SAXS data for the high transmission samples. The latter discrepancy is likely due to the lower resolution of the SANS measurements because of wavelength smearing and multiple scattering. A SANS sample with Tr = 0.97 shows a minor deviation from Porod's law only (alpha = 3.9). The original SANS data and the SAXS data corrected for the fluctuation component indicate that the CB surface is essentially smooth.  相似文献   

6.
The extent of phase separation in Nafion® perfluorosulfonate ionomer membranes has been studied by small-angle neutron scattering (SANS). These polymers, which consist of a perfluorocarbon main chain and a sulfonate-containing side group, can absorb up to 30% by weight of water. Previous studies have shown that clustering of water occurs, forming particles in the size range observable by SANS. The current study is concerned with the fraction of water molecules which participate in the clustering and the chemical composition of the phases present. Experiments have been made on melt-quenched samples which have no fluorocarbon crystallinity. The analysis is based on isotopic replacement experiments in which SANS measurements are made on samples hydrated with mixtures of H2O and D2O. Values of the small-angle x-ray scattering (SAXS), mean-square electron density fluctuation, and mass density are used as additional criteria. It is shown that at high water content (more than 15% absorption by weight), a two-phase model can explain the data with a majority (>60%) of the water molecules in one phase and most (>90%) of the perfluorocarbon in the other phase; a sample hydrated to a lower extent (8% by weight) shows deviations from the two-phase model. These results are consistent with the scattering behavior at large angles observed by SAXS.  相似文献   

7.
We present the study of the adsorption of a non-ionic surfactant onto latex particles by small-angle X-ray scattering (SAXS). The analysis of the process of adsorption by SAXS is discussed in detail. It is demonstrated that SAXS allows to monitor the gradual built-up of the surface layer with increasing amount of added surfactant. SAXS also allows to obtain the radial volume fraction of the hydrophilic tails of the surfactant. Possible limitations of this analysis are discussed.  相似文献   

8.
An extensive characterization of well-defined polystyrene (PS)-grafted silica nanoparticles is reported. Bare SiO2 particles (diameter 50 nm) were functionalized with a suitable initiator for the surface-initiated anionic polymerization of styrene. Both grafted and free PS chains were characterized and compared by size-exclusion chromatography (SEC). PS-grafted particles were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), small-angle x-ray scattering (SAXS), small-angle neutron scattering (SANS), and dynamic light scattering (DLS). The thickness of the grafted PS chains was obtained by SANS and DLS and scaled with $M_{\mathrm {w}}^{0.6}$ displaying similar behavior with free PS chains in the same solvent used, tetrahydrofuran (THF). Grafting densities obtained from SANS data and TGA were found to be small, and the thickness of the grafted PS chains determined by SANS was found to be similar to $2R_{\mathrm {g}}$ of free PS chains in THF. Both results are consistent with a “coil-like” conformation of the grafted PS chains.  相似文献   

9.
High-resolution small-angle X-ray scattering (SAXS), complemented by small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments, was used to study the effect of curvature on the bilayer structure of dioleoyl-phosphatidylcholine (DOPC) and dioleoyl-phosphatidylserine (DOPS) unilamellar vesicles (ULVs). Bilayer curvature, as a result of finite vesicle size, was varied as a function of vesicle radius and determined by DLS and SANS measurements. Unilamellarity of large DOPC ULVs was achieved by the addition of small amounts (up to 4 mol %) of the charged lipid, DOPS. A comparison of SANS data over the range of 0.02 < q <0.2 A-1 indicated no change in the overall bilayer thickness as a function of ULV diameter (620 to 1840 A). SANS data were corroborated by high-resolution (0.06 < q <0.6 A-1) SAXS data for the same diameter ULVs and data obtained from planar samples of aligned bilayers. Both the inner and outer leaflets of the bilayer were found to be indistinguishable. This observation agrees well with simple geometric models describing the effect of vesicle curvature. However, 1220-A-diameter pure DOPS ULVs form asymmetric bilayers whose structure can most likely be rationalized in terms of geometrical constraints coupled with electrostatic interactions, rather than curvature alone.  相似文献   

10.
The time evolution of silica nanoparticles in solutions of tetrapropylammonium (TPA) has been studied using a combination of small-angle scattering, conductivity, and pH measurements to provide the first comprehensive analysis of nanoparticle structural and compositional changes at elevated temperatures. We have found that silica-TPA nanoparticles subjected to hydrothermal treatment (70-90 degrees C) grow via an Ostwald ripening mechanism with growth rates that depend on both pH and temperature. Small-angle X-ray (SAXS) and neutron (SANS) scattering confirm that the core-shell structure of the particles, initially present at room temperature, is maintained during heating, but an evolution toward sphericity is evidenced especially at high values of pH. SAXS absolute intensity calculations were utilized to calculate the changes in nanoparticle composition and concentration over time. These changes along with the conductivity and pH measurements and SANS contrast matching studies indicate that, upon heating, TPA becomes embedded in the core of nanoparticles giving rise to more zeolitic-looking nanomaterials.  相似文献   

11.
Results of swelling and small-angle scattering experiments on samples of nylon-6 swollen with heavy water are discussed on the basis of the lamellar and switchboard models. The small-angle neutron scattering (SANS) intensity is very sensitive to the distribution of water in swollen samples, while the small-angle x-ray scattering (SAXS) data characterize the dry samples. The observed values of the mean-square fluctuation of scattering-density can be explained by a model with assumed inhomogeneous swelling of the amorphous phase.  相似文献   

12.
Peptide–lipid interactions play an important role in defining the mode of action of drugs and the molecular mechanism associated with many diseases. Model membranes consisting of simple lipid mixtures mimicking real cell membranes can provide insight into the structural and dynamic aspects associated with these interactions. Small-angle scattering techniques based on X-rays and neutrons (SAXS/SANS) allow in situ determination of peptide partition and structural changes in lipid bilayers in vesicles with relatively high resolution between 1-100 nm. With advanced instrumentation, time-resolved SANS/SAXS can be used to track equilibrium and nonequilibrium processes such as lipid transport and morphological transitions to time scales down to a millisecond. In this review, we provide an overview of recent advances in the understanding of complex peptide–lipid membrane interactions using SAXS/SANS methods and model lipid membrane unilamellar vesicles. Particular attention will be given to the data analysis, possible pitfalls, and how to extract quantitative information using these techniques.  相似文献   

13.
The self-assembly in aqueous solution of a PEG-peptide conjugate is studied by spectroscopy, electron microscopy, rheology and small-angle X-ray and neutron scattering (SAXS and SANS). The peptide fragment, FFKLVFF is based on fragment KLVFF of the amyloid beta-peptide, Abeta(16-20), extended by two hydrophobic phenylalanine units. This is conjugated to PEG which confers water solubility and leads to distinct self-assembled structures. Small-angle scattering reveals the formation of cylindrical fibrils comprising a peptide core and PEG corona. This constrained structure leads to a model parallel beta-sheet self-assembled structure with a radial arrangement of beta sheets. On increasing concentration, successively nematic and hexagonal columnar phases are formed. The flow-induced alignment of both structures was studied in situ by SANS using a Couette cell. Shear-induced alignment is responsible for the shear thinning behaviour observed by dynamic shear rheometry. Incomplete recovery of moduli after cessation of shear is consistent with the observation from SANS of retained orientation in the sample.  相似文献   

14.
The physical structure of Nafion membranes has been investigated by small-angle neutron scattering (SANS) and small-angle x-ray scattering (SAXS). Samples in the acid form may exhibit two scattering peaks. The first, observed by SANS at an angle corresponding to a Bragg spacing of 180 Å, is shown to arise from structures in crystalline regions. A second peak at larger scattering angles is shown to arise from ion-containing regions which may be swollen with water. Salt-form samples made by soaking the acid form in an aqueous salt solution can also exhibit the same two scattering signals. But in amorphous salt-form samples produced by quenching from the melt the first peak is absent. This permits a more accurate study of the second peak by SAXS, which shows that the second scattering component is present as a maximum over a wide range of water contents but is absent in a sample dried at 200°C. The position of the peak shifts to lower scattering angles (or larger spacings) at higher water contents. Possible structural models that might give rise to the maximum are discussed. A calculation of the SAX invariant is made and results are consistent with a phase separation of a large fraction of the water.  相似文献   

15.
The morphology of micelles formed by two novel metallosurfactants has been studied by small-angle neutron scattering (SANS) and small-angle-X-ray scattering (SAXS). The two surfactants both contain a dodecyl chain as the hydrophobic moiety, but differ in the structure of the head group. The surfactants are Cu(II) complexes of monopendant alcohol derivatives of a) the face-capping macrocycle 1,4,7-triazacyclanonane (tacn), and b) an analogue based upon the tetraazamacrocycle 1,4,7,10-tetraazacyclododecane. Here, neutron scattering has been used to study the overall size and shape of the surfactant micelles, in conjunction with X-ray scattering to locate the metal ions. For the 1,4,7,10-tetraazacyclododecane-based surfactant, oblate micelles are observed, which are smaller to the prolate micelles formed by the 1,4,7-triazacyclononane analogue. The X-ray scattering analysis shows that the metal ions are distributed throughout the polar head-group region, rather than at a well-defined radius; this is in good agreement with the SANS-derived dimensions of the micelle. Indeed, the same model for micelle morphology can be used to fit both the SANS and SAXS data.  相似文献   

16.
Calcium hydroxide forms unstable reactive nanoparticles that are stabilized when they are dispersed in ethylene glycol or 2-propanol. The aggregation behavior of these particles was investigated by contrast-variation small-angle neutron scattering (SANS), combined with small-angle X-ray scattering (SAXS). Nanoparticles on the order of 100 nm were found to aggregate into mass-fractal superstructures in 2-propanol, while forming more compact agglomerated aggregates with surface fractal behavior in ethylene glycol. Commensurate specific surface areas evaluated at the Porod limit were more than an order of magnitude greater in 2-propanol (approximately 200 m2.g(-1)) than in ethylene glycol (approximately 7 m2.g(-1)). This profound microstructural evolution, observed in similar solvents, is shown to arise from competitive solvent adsorption. The composition of the first solvent layer on the particles is determined over the full range of mixed solvent compositions and is shown to follow a quantifiable thermodynamic equilibrium, determined via contrast-variation SANS, that favors ethylene glycol over 2-propanol in the surface layer by about 1.4 kJ.mol(-1) with respect to the bulk solvent composition.  相似文献   

17.
Small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) as well as small-angle light-scattering (SALS) techniques have been applied to investigate the microstructure of a number of commercial poly(vinyl chloride) (PVC) samples. From the wide-angle x-ray scattering, crystallinity and crystal size parameters have been determined. The crystallinity of the samples investigated range from 5% to 10%. Superstructure parameters such as crystallite thickness, distribution functions of crystallite and amorphous thicknesses, and size of ordered regions have been obtained by an analysis of the SAXS curves using the cluster model. The crystallinity agrees well with the WAXS crystallinities indicating that most of the crystals are lamellar shaped, though some rodlike entities are present in the sample as is shown by the small-angle light scattering. From the SAXS analysis, the microstructure is described as clusters of lamella stacks which are identical with the subprimary particles. Their size is determined to be 220–240 Å. Emulsion type PVC also contains lamellar-shaped crystals. The superstructure, however, of this type of PVC is different from that of mass or suspension-polymerized material. The SAXS curve does not reveal any correlation between the crystals.  相似文献   

18.
 The analysis of the interaction of micelles formed by a blockcopolymer is given by means of small-angle X-ray (SAXS) and small-angle neutron scattering (SANS). The blockcopolymer consists of poly(styrene) and poly(ethylene oxide) (molecular weight of each block: 1000 g/mol) and forms well-defined micelles (weight-association number: 400, weight-average diameter: 15.4 nm) in water. The internal structure has been studied previously (Macromolecules 29:4006 (1996)) by SAXS. There it has been shown that the micelles are spherical objects. The structure factor S(q) as a function of the scattering vector q (q=(4π/λ) sin (θ/2); λ: wavelength of the radiation in the medium; θ: scattering angle) can be extracted from both sets of small-angle scattering data (SANS: q≤0.4 nm-1; SAXS: q≤0.6 nm-1). It is shown that particle interaction in the present system can be described by assuming soft interaction which is modeled by a square-step potential. Received: 12 May 1997 Accepted: 9 July 1997  相似文献   

19.
Preliminary small-angle neutron scattering (SANS) studies have been made of different ionomers in the dry state and after saturation with water. Scattering from the dry samples arises from differences in the neutron scattering cross sections of the ionic and nonionic units in the polymer. The SANS technique is complementary to previous small-angle x-ray scattering (SAXS) studies since the SANS contrast differences are generally quite different than those for SAXS. A quantitative comparison is made of SANS and SAXS intensities for a dry cesium salt of an ethylene-methacrylic acid (E-MAA) copolymer. For water-saturated samples the technique of isotopic replacement can be used in conjunction with SANS since saturation can be effected with either H2O or D2O. In this case information about the chemical composition of the phases is obtained from an analysis of the intensity ratio I/I. Results are consistent with the presence of a separate phase containing water molecules and ions in a matrix of the nonionic units. A Guinier analysis gives a radius of gyration of 17 Å for a water-saturated cesium salt of an E-MAA copolymer.  相似文献   

20.
Aqueous gel-like solutions of N-acyl-L-aspartic acids (C(n)Asp, n=14, 16, 18) and N-dodecanoyl-beta-alanine (C(12)Ala) were prepared at pH 5-6 at room temperature. Structures of supramolecular assemblies in the solutions were investigated by atomic force microscopy (AFM), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS). The cross-sectional radii, 22-30 ?, of helical, fibrous assemblies were obtained from analysis of SANS for 1% gel-like C(n)Asp solutions. Three Bragg spacings were observed in a SANS spectrum for a 6% C(16)Asp solution. C(n)Asp molecules are associated into the unit chain of a helical bilayer strand with a diameter of 50-60 ?. Unit chains where linear bilayers twist form a double strand with helical sense of approximately 650-? pitch. It was confirmed from AFM images that cylindrical fibers in a gel-like C(12)Ala solution had a circular cross-section. The SAXS spectrum showed characteristic Bragg spacings. Cylindrical C(12)Ala fibers consist of multilamellar layers of period approximately 34-?. The fibers are laterally organized with period 365-380 ?. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号