首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
The formation of an ordered arrangement of C60 molecules as path-like structures on the surface of highly oriented pyrolytic graphite (HOPG) is reported for the first time with theoretical implementations. Fullerene nucleation and deposition from solutions with different concentrations of C60 is performed under ambient conditions without electrochemical processes. Scanning tunneling microscopy (STM) is used to study the surface topography. The results reveal new aspects of fullerene deposition that can potentially aid in modeling with theoretical simulations.  相似文献   

2.
We report on the growth of palladium nanoparticles on the basal plane of as‐cleaved highly oriented pyrolytic graphite (HOPG) samples, and on CO2 ion sputtered nanostructured HOPG surfaces. The morphology of Pd nanostructures grown at room temperature is investigated by scanning tunneling microscopy (STM). The STM observations indicate that the morphology of the Pd films is strongly dependent on the HOPG surface. Stabilized Pd particles only form on the sputtered surface, while ramified Pd particles decorate the clean HOPG terraces. The prestructuring of HOPG surface leads to a selective location of particles at the rim of the nanopits generated by the CO2 ion sputtering and annealing of the surface. The correlation between size, form, density, spatial distribution of the Pd nanoparticles and the quantity of metal added on surface is discussed. We also describe trench channeling of graphite or graphene basal planes by means of Pd nanoparticles in an ambient environment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The spontaneous adsorption of ferrocene and eight derivatives have been examined electrochemically on highly ordered pyrolytic graphite edges. All compounds give surface coverages of ca. 2×10?8 mol/cm2. Three of the adsorbed compounds give oxidation waves significantly more negative than their solution counterparts, in contrast with the other six derivatives.  相似文献   

4.
Nanostructures and nanoparticles of palladium assembled on highly ordered pyrolytic graphite (HOPG) by the adsorption of palladium molecular precursors (MPs), in dichloromethane solutions, have been prepared. Self-assemblies of palladium nanostructures on HOPG were characterized by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques. In this work, palladium rings had a wide variety of sizes in the nanometer range, and the ring/tube structures were preserved after a reductive process in which palladium metallic nanoparticles were formed. Noncircular structures were observed at HOPG defects and atomic step sites, as well. It is proposed that the observed ring formation of the palladium molecular precursors on HOPG substrates is related to the functional groups in the MPs, van der Waals interactions between particles and between particle-substrate, as well as the wetting properties of the solvent. In the present work, we illustrate several examples of the formation and characterization of palladium complex tubes and the resulting palladium rings, via the reduction process.  相似文献   

5.
Highly ordered pyrolytic graphite (HOPG) surfaces were modified by the adsorption of Pd molecular precursors from solution. Two palladium-containing molecular precursors were studied, a mononuclear one and a trinuclear one, to compare their affinities and distributions at substrate surfaces. To obtain Pd nanoparticles, these neutral molecular precursors were reduced under a hydrogen atmosphere. Thermogravimetric analysis was carried out to establish the behavior of these precursors at various temperatures. Understanding the thermal stability of these compounds is very important to establish the appropriate conditions to form metallic Pd. The modified surface has been characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy; also, the reductive process was monitored by XPS. Remarkable differences were observed between the mononuclear and trinuclear compounds in terms of dispersion, particle size, and homogeneity. The preference of the trinuclear compound was to deposit at HOPG defects, in contrast to that of the mononuclear one, which was agglomeration on all surfaces. After the application of this technique, not only Pd nanoparticles but also Pd nanowires were obtained.  相似文献   

6.
Scanning tunneling microscopy (STM) has been used to investigate the structure of pure and mixed monolayers formed by adsorption of long-chain alkanes and/or ethers on highly ordered pyrolytic graphite. Application of a pure phenyloctane solution of simple alkanes, such as tritriacontane, CH3(CH2)31CH3, produced a monolayer within which the individual molecular axes were oriented perpendicular to the lamellar axes. In contrast, a pure solution of symmetrical long-chain ethers, such as di-n-hexadecyl ether, CH3(CH2)15O(CH2)15CH3, produced a monolayer within which the molecular axes were oriented at an angle of approximately 65 degrees relative to the lamellar axes. The compositions of the overlying solutions were then gradually changed either from pure alkanes to nearly pure ethers or from pure ethers to nearly pure alkanes. When ethers replaced alkanes in the monolayer, the ethers conformed to the orientation within the existing alkane layer, rather than adopting the characteristic orientation of pure ether monolayers. However, when alkanes were incorporated into monolayers that had been formed from pure ether solutions, the orientation of the molecules within the monolayer converted to that characteristic of pure alkanes. Alkane monolayers thus acted as templates for subsequent ether layers, but ether monolayers did not act as templates for alkane layers.  相似文献   

7.
We explore and contrast the electroanalytical performance of a commercially available CVD grown graphene electrode with that of edge- and basal-plane pyrolytic graphite electrodes constructed from highly ordered pyrolytic graphite for the sensing of biologically important analytes, namely β-nicotinamide adenine dinucleotide (NADH) and uric acid (UA). We demonstrate that for the analytes studied here, in the best case, the electroanalytical performance of the CVD-graphene mimics that of edge plane pyrolytic graphite, suggesting no significant advantage of utilising CVD-graphene in this context.  相似文献   

8.
Migration of Cd, Cu and Ag from solution deposited samples of the respective nitrates into highly oriented pyrolytic graphite (HOPG) was studied using electrothermal atomic absorption spectroscopy (ETAAS) with platform vaporization. Metal migration was verified by removing the top layers of the HOPG platform after the sample had dried and performing the analysis using ETAAS. The results obtained suggest that the metals or their salts migrate into HOPG only when the sample solutions are deposited on those areas of the platform that have surface imperfections. The surface blemishes can be seen as tiny lines on the otherwise smooth surface of the HOPG platform. One possible driving force for the migration could be simple capillary action; however, additional information is needed to establish the true mechanism.

The effect of metal migration into graphite on atomic absorption profiles was also evaluated. This effect was studied by comparing the signals obtained after the sample had been deposited either on the imperfections or on the smooth areas of the HOPG platform. In addition, samples were atomized from both sides of a pyrolytic coated platform in which one of the sides had been roughened with an abrasive material to expose the electrographite. The main effect of metal migration on the absorption profiles seems to be an increased tailing of the back edge of the signals. This could suggest a secondary generation function limited by the rate of diffusion of the metal back to the substrate surface and subsequent vaporization.  相似文献   


9.
An approach for the fabrication of metal nanowires is presented. Palladium wires with diameters less than 50 nm were produced by electrochemical decoration of step edge sites on the surface of highly ordered pyrolytic graphite via the following three steps. First an electrochemical activation step was used to oxidize the edge plane sites on highly ordered pyrolytic graphite surfaces in 0.5 M Na(2)SO(4). Second, a potential cycling step in a 1 mM PdCl(2) solution in 0.1 M H(2)SO(4) was used to form palladium oxide (s) and/or complexes of Pd on the step edges. Third, Pd nanowires were formed by electroreduction after transfer of the graphite to 0.1 M H(2)SO(4). The resulting wires showed a high degree of uniformity. A merit of this approach is that it allowed metal nanowires to be fabricated without the simultaneous formation of nanoparticles on the basal plane terraces, in contrast to other studies of this type. The mesoscopic palladium wires are shown to be useful for the electrochemical sensing of hydrazine.  相似文献   

10.
Three double-decker complexes of cerium(IV) were synthesized, which commonly have a 5,10,15,20-tetrakis(4-docosyloxyphenyl)porphyrin (C22OPP) moiety as one of the two tetrapyrrole rings. The three complexes-Ce(Pc)(C22OPP), Ce(C22OPP)2, and Ce(BPEPP)(C22OPP)-are distinguished by the other rings, which are Pc (=phthalocyanine), C22OPP, and BPEPP (=5,15-bis[4-(phenylethynyl)phenyl]porphyrin), respectively. The rate of inter-ring rotation of Ce(BPEPP)(C22OPP) was estimated to be approximately 3 s(-1) in solution at room temperature. These complexes assemble into ordered arrays at the interface of 1-phenyloctane and the highly oriented pyrolytic graphite surface, owing to the affinity of the long alkyl chains toward the surface, as revealed by means of scanning tunneling microscopy (STM) with molecular resolution. The shape of the upper ring is reflected in the STM image. Thus, Ce(Pc)(C22OPP), Ce(C22OPP)2, and Ce(BPEPP)(C22OPP) were observed as circular, square, and elliptic features, respectively. Possible molecular arrangements in the array of Ce(BPEPP)(C22OPP) are proposed by comparing STM images and molecular models. In the mixed arrays of Ce(BPEPP)(C22OPP) and H2(C22OPP), the double-decker complexes were distinguished by brighter features. Competitive adsorption experiments showed that the adsorption of Ce(BPEPP)(C22OPP) is less favorable than that of H2(C22OPP) by DeltaG(app) = 2.7 kJ mol(-1). Ce(BPEPP)(C22OPP) molecules appeared elliptic when placed within their own row, while they appeared isotropic when flanked by H2(C22OPP) molecules. Implications of the differences in the observed shapes to the inter-ring rotation are discussed.  相似文献   

11.
The 2D assembly of phthalhydrazide 1 and aminopyrimidine 2 derivatives equipped with C16 and C8 alkyl chains, respectively, on highly ordered pyrolytic graphite (HOPG) was studied by scanning tunneling microscopy. Well-defined, rather complex surface layer patterns emerge resulting from a delicate balance of (self-) complementary (strong) hydrogen bonds and van der Waals force-driven ordering of the alkyl substituents on the HOPG surface. The four different compounds and their 1:1 mixtures yield seven different 2D structures. Phthalhydrazide offers in principle three tautomeric forms, with the lactim/lactam being the most stable. Depending on the solvent, different morphologies can be obtained. In one case, the special self-assembly of achiral 1a leads to a 2D chiral packing with the left- and right-hand motifs present in different domains. We assume that pure 1a is expressed in its lactim/lactam form, whereas in a 1:1 mixture with 2a it switches to the bislactam form. These features display a process of dynamic diversity generation through tautomerism resulting in different nanostructures in response to environmental parameters.  相似文献   

12.
13.
The reactivity of electrogenerated benzyl radicals at carbon surfaces was examined through the cathodic reduction of the corresponding bromide derivatives. 4-Nitrobenzyl bromide and benzyl bromide were reduced in N,N-dimethylformamide (DMF) on highly ordered pyrolytic graphite (HOPG) surfaces. Electroproduced films were examined using electrochemistry, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Experiments show the formation of strongly adherent deposits and the occurrence of electrografting processes. They are based on radical generation and the reaction of the radical with the substrate. As expected, the thickness of the organic film increases with deposition time but the deposit displays a lower compactness than previously reported for the electroreduction of aryl diazonium salts. Interestingly for benzyl derivatives, the reduction potential required for the electrografting could be rendered much more positive by simply using an iodide-type supporting electrolyte.  相似文献   

14.
Duplex DNA functionalized with pyrene has been utilized to fabricate DNA-modified electrodes on highly oriented pyrolytic graphite (HOPG). Films have been characterized using AFM and radioactive labeling as well as electrochemically. The data obtained are consistent with a close-packed structure in the film with helices oriented in a nearly upright orientation, as seen earlier with the fabrication of thiol-tethered duplexes on gold. Also as on gold, we observe the reduction of DNA-bound intercalators in a DNA-mediated reaction. The reduction of the intercalator is attenuated in the presence of the single-base mismatches, CA and GT, independent of the sequence composition of the oligonucleotide. This sensitivity to single-base mismatches is enhanced when methylene blue reduction is coupled in an electrocatalytic cycle with ferricyanide. The extended potential range afforded by the HOPG surface has allowed us also to investigate the electrochemistry of previously inaccessible metallointercalators, Ru(bpy)2dppz2+ and Os(phen)2dppz2+, at the DNA-modified HOPG surface. These results support the application of DNA-modified HOPG as a convenient and reproducible surface for electrochemical DNA sensors using DNA-mediated charge transport.  相似文献   

15.
Carbon corrosion that is presumed to occur at the proton exchange membrane fuel cell (PEMFC) cathode was visualized by atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) observations using a fundamental model electrode. Platinum nanoparticles were deposited on a highly oriented pyrolytic graphite (HOPG) substrate as a model cathode catalyst, and its stability in an acid solution at a fixed potential was investigated. The formation of blisters on the surface of the model electrode was observed by AFM after it was kept at 1.0 V vs. RHE, especially at and around the Pt particles. FE-SEM observations using a backscattered electron detector revealed that Pt particles remained unchanged at their original positions after the formation of blisters.  相似文献   

16.
Immobilization of protein molecules on solid supports or surfaces in a controlled fashion is an important task for protein analysis at the solid/solution or solid/gas interface and biosensor fabrication. In this paper, the structure and biological activities of metallothionein (MT) layers immobilized on highly oriented pyrolytic graphite (HOPG) surfaces by means of two different strategies based on unspecific adsorption/chemisorption (MT‐HOPG system) and covalent binding (MT‐modified HOPG system) were studied respectively. The MT layers obtained by covalent binding to a previously functionalized HOPG surface are smooth and show a close‐packed ordered monolayer in contrast to those obtained by direct adsorption of the protein on substrate, which are disordered and relatively rough. Both adsorbed proteins exhibit reversible electron transfer at 0.25 V (Ag/AgCl) after immersion in CuSO4 solution, whereas redox current of MT‐modified HOPG system is four times larger than that of MT‐HOPG system. Moreover, the MTs adsorbed on bare HOPG surfaces are obviously denatured. All the above results show that covalent binding strategies lead to high structural regularity and mechanical stability of the adsorbed protein molecules with a maintained biological activity, which is prospective for applications in immobilizing MT on a transducer for biosensor design. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Cobalt in the form of three-dimensional (3D) hemispherical clusters (size approximately 10-30 nm) were observed to grow on pristine graphite surfaces via a Volmer-Weber growth mode. X-Ray photoelectron spectroscopy (XPS) reveals that these clusters are physisorbed on the surface. In the presence of minute surface contamination, the morphology of Co changes into a mixture of irregular and hemispherical three-dimensional islands. The formation of irregular islands appears to be mediated by the chemical interactions between Co and the surface contaminants as evidenced from analysis of the carbon pi-pi* transitions. Further analysis of size distribution of Co nanoclusters grown on pristine surfaces shows a critical nucleus size of i* = 1, i.e. a Co dimer forms the smallest stable cluster on a pristine graphite surface.  相似文献   

18.
Molecular layer of tungstosilicic acid (H4SiW12O40) deposited on freshly-cleaved highly oriented pyrolytic graphite (HOPG) was observed by scanning tunneling microscopy (STM) in air at room temperature.The molecular dimension (11.5 A) of H4SiWi2O4o measured by STM is consistent with known crystallographic parameter.We also imaged the boundary of H4SiW12O40 molecular layer on HOPG showing that molecular layer of H4SiW12O40 was formed.It has been proved that individual tungstosilicic acid species is imaged.The probable reason for the formation of the molecular layer is also discussed.  相似文献   

19.
Various sizes of Ag particles were grown on highly oriented pyrolytic graphite (HOPG) surfaces, which had previously been modified with nanopits to act as anchoring sites. Surface reactions of O2, CHCl3, and CCl4 on the Ag particles and bulk Ag(111) surfaces were studied by X-ray photoelectron spectroscopy (XPS), and it has been shown that size dependence of O2 and CHCl3 reactions on Ag differs from that of CCl4. Weak reactions of O2 and CHCl3 were observed on the bulk Ag(111) surfaces, while strong reactions occur on Ag particles with medium Ag coverage, suggesting that the reactions are controlled by the number of surface defect sites. On the contrary, the dissociation of CCl4 is mainly determined by the exposed Ag facet area, mainly Ag(111) facet, and strong dissociation reaction happens on the bulk Ag(111) surface. The results suggest that the size effects, which are often discussed in heterogeneous catalysis, are strongly dependent on the reaction mechanism.  相似文献   

20.
A novel amperometric sensor for uric acid based on ordered mesoporous carbon modified pyrolytic graphite electrode was developed. Uric acid oxidation was easily catalyzed by this electrode in a phosphate buffer solution at pH 7.0, with an anodic potential decrease about 140 mV compared to bare pyrolytic graphite electrode. The uric acid level was determined by the amperometric method, at a constant potential of 0.31 mV, the catalytic current of uric acid vs. its concentration showed a good linearity in the range of 1.0 × 10−6−1.0 × 10−4 mol L−1, with a correlation coefficient of 0.999. The detection limit was 4.0 × 10−7 mol L−1. The proposed method could be effectively used for uric acid amperometric sensing in human urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号