首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of copolymers of predominantly poly(ethylene oxide) (PEO) with mono-phenyl (HQ), biphenyl (BP) units, or both of them (HQ/BP) in the backbone were synthesized. The solid polymer electrolytes (SPEs) were prepared from three different types of copolymers (HQ-PEG, BP-PEG, and HQ/BP-PEG) employing lithium perchlorate (LiClO4) as a lithium salt at a fixed salt concentration of [EO]/[Li+]=8. Their ionic conductivities were investigated to exploit the structure–ionic conductivity relationships as a function of structural change in rigid phenyl units and chain length ratio between flexible PEO chain and rigid phenyl units. As more rigid phenyl units were incorporated in the backbone chain, the formation inter- and intra-molecular complex with LiClO4 became weaker and lower ionic conductivities were observed. And it was also found that higher ionic conductivity is obtained with increasing PEO chain length because inter- and intra-molecular dissociation power of PEO increases.  相似文献   

2.
Four poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers with different molecular weights and PPO/PEO composition ratios were synthesized. The characterization of the PEO-PPO-PEO triblock copolymers was studied by surface tension measurement, UV-vis spectra, and surface pressure method. These results clearly showed that the CMC of PEO-PPO-PEO was not a certain value but a concentration range, in contrast to classical surfactant, and two breaks around CMC were reflected in both surface tension isotherm curves and UV-vis absorption spectra. The range of CMC became wider with increasing PPO/PEO composition ratio. Surface pressure Pi-A curves revealed that the amphiphilic triblock copolymer PEO-PPO-PEO molecule was flexible at the air/water interface. We found that the minimum area per molecule at the air/water interface increased with the proportion of PEO chains. The copolymers with the same mass fractions of PEO had similar slopes in the isotherm of the Pi-A curve. From the demulsification experiments a conclusion had been drawn that the dehydration speed increased with decreased content of PEO, but the final dehydration rate of four demulsifiers was approximate. We determined that the coalescence of water drops resulted in the breaking of crude oil emulsions from the micrograph.  相似文献   

3.
Novel, water-soluble thermoassociative graft copolymers based on high molecular weight (HMW) poly(ethylene oxide-co-glycidol) backbone and relatively short grafts of poly-N-isopropyl acrylamide (NIPAAm) were prepared. The copolymer precursors with two architectures (block and graft) were synthesized using Ca-amide-alkoxide initiators. The OH groups in the copolymer precursors have been utilized for grafting NIPAAm using ceric ion (Ce4+) redox initiation. The idea was to imprint the “smart” properties of PNIPAAm grafts into common HMW poly(ethylene oxide). The sensitive moieties undergo reversible association transitions by changing the temperature of dilute and semidilute aqueous solutions of the copolymers. Associative properties were studied by viscosity and rheology measurements. Two types of interactions, induced by heating, depending on the copolymer concentration namely intra- and intermolecular association were observed.  相似文献   

4.
5.
The self-diffusion of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers dissolved in deuterated water was investigated by means of pulsed field gradient NMR (PFG-NMR). The polymer forms micelles in the solution and, with increasing temperature, clouding and phase demixing occurs. The self-diffusion coefficient indicates the association of the polymer molecules in the vicinity of the cloud point because of its maximum with increasing temperature. Above the cloud point, two kinds of diffusing species are observed due to phase separation. The faster diffusing species is attributed to the polymer-poor phase. The self-diffusion coefficient of the polymer-rich phase species decreases with increasing temperature above the cloud point due to further association and dehydration. The correlation length of the diffusing associates, calculated from the self-diffusion coefficient and the viscosity by means of the Stokes-Einstein equation is nearly independent of temperature and concentration up to 30 wt-% polymer concentration. The correlation length is about 1.4 nm. It shows a slight maximum at the cloud point.  相似文献   

6.
The micellization properties of carboxy-modified Pluronics P85 (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers) are investigated by means of a molecularly realistic self-consistent-field theory. We consider the, so-called, carboxylic acid end-standing P85 (CAE-85) case where the carboxylic group is located at the end of both PEO parts and the carboxylic acid center-standing P85 (CAC-85) case where each of the carboxylic group presents between the PEO and PPO blocks. The micellization of these copolymers depends on the pH, the added electrolyte concentration phis, and the temperature. It is shown that the aggregation number (Nagg) decreases, whereas the critical micellization concentration (CMC) increases with pH. For the case of increasing phis, the Nagg increases and the CMC decreases. The critical micellization temperature (CMT) and cloud point temperature (CPT) increase with pH at low phis and decrease at increasing phis. The changing from CAE-85 to CAC-85 leads to increasing CMC and CMT, but lower CPT.  相似文献   

7.
The present paper discusses block copolymers with segments of either poly(ethylene oxide), poly(propylene oxide), or mixtures of poly(ethylene oxide)/poly(propylene oxide) and monodisperse aramide segments. The length of the polyether segments as well as the concentration of polyethylene oxide was varied. The synthesized copolymers were analyzed by DSC, FTIR, AFM and DMTA. In addition, the hydrophilicity was studied.The crystallinity of the monodisperse aramide segments was found to be high and the crystals, dispersed in the polyether phase, displayed a nano-ribbon morphology. The PEO segments were able to crystallize and this crystalline phase reduced the low-temperature flexibility. The PEO crystallinity and melting temperature could be strongly reduced by copolymerization with PPO segments. By using mixtures of PEO and PPO segments, hydrophilic copolymers with decent low-temperature properties could be obtained.  相似文献   

8.
The phase behavior and aggregation properties of block copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronics, poloxamers) in aqueous solution have recently attracted much attention. Both experimental and theoretical studies are reviewed, not comprehensively, but with the focus on studies, partly cooperative, partly independent, performed by groups in Uppsala (light scattering and fluorescence), Roskilde (rheology and calorimetry), Risø (SANS), Graz (x-ray and speed of sound), and Lund (theoretical model calculations).The phase behavior of these copolymers is similar in many respects to that of conventional nonionic surfactants, with the appearance of hexagonal, cubic, and lamellar liquid crystalline phases at high concentrations. In the isotropic solution phase the critical concentration for micelle formation is strongly temperature dependent, and at a given concentration the monomer to micelle transition occurs gradually over a broad temperature range, partly due to the broad size polydispersity of both the PO- and EO-blocks. For some Pluronic copolymers a transition from globular to long rod-like micelles occurs above a transition temperature, resulting in a strong and sudden increase of viscosity and viscoelasticity of the solution.Size and aggregation numbers have been determined for the globular micelles in some cases, and also the rod-like micelles have been characterized. NMR and fluorescence measurements have provided further information on the properties of the micellar core and mantle. In combination, results from different measurements on the same Pluronics material indicate that the aggregation number of the micelles increases with the temperature, whereas the hydrodynmic radius varies much less. The PEO-mantle of the micelles seems to contract with increasing temperature. The core appears to contain appreciable amounts of PEO in addition to PPO (and also some water). The segregation between core and mantle is not as distinct as in normal micelles, a conclusion which is in line with the predictions from the model calculations.  相似文献   

9.
The phase diagrams of some binary systems such as poly(ethy lene oxide)-p-dihalogenobenzene, poly(ethylene oxide)-resorcinol and poly(ethylene oxide)-p-nitrophenol show the existence of molecular complexes with a well definite stoichiometry. The crystal structure of these molecular complexes has been determined by wide-angle X-ray diffraction. The morphology of these molecular complexes crystallized from the melt is investigated by differential scanning calorimetry and small angle X-ray scattering. PEO-p-dichlorobenzene and PEO-resorcinol complexes crystallize from the melt as extended chains (EC) or integral folded chain (IFC) lamellar crystals. As observed for PEO oligomers, the fraction of EC crystals of PEO-resorcinol increases with the crystallization temperature. However EC crystals are present in a larger range of crystallization temperatures than for pure PEO. On the other hand, the PEO-p-nitrophenol complex crystallizes over all the studied crystallization temperature range as stable non integral folded chain (NIFC) crystals. Explanations related to the crystal structure of these complexes and to their mode of growth are invoked to explain these two deeply different lamellar morphologies.  相似文献   

10.
Enzymatic and microbial degradability of poly(ethylene terephthalate) (PET) and PET copolyesters containing 30 mol% of either 5-nitroisophthalic units (PET70NI30) or nitroterephthalic units (PET70NT30) was investigated in laboratory cultures. Two commercial fungal lipases, two bacteria from environmental isolates, and two collection filamentous fungi were tested. The topography of the polymer surface exposed to degradation was characterized by interferometry-confocal microscopy techniques. Biodegradation was estimated by optical and electron microscopy observation, and gel permeation chromatography. Evidence of biodegradation including roughness enhancement, swelling and decrease of the weight-average molecular weight, was only obtained for the case of PET70NT30 cultured with Aspergillus niger. Differences in surface textures were found to be crucial to determine the positive response of this copolyester to biodegradation.  相似文献   

11.
This study demonstrates that adding clay that was organically modified by dimethyldioctadecylammonium chloride (DDAC) and d2000 surfactants increases the ionic conductivity of polymeric electrolyte. A.C. impedance, differential scanning calorimetric (DSC), and Fourier transform infrared (FTIR) studies revealed that the silicate layers strongly interact with the dopant salt lithium perchlorate (LiClO4) within a poly(ethylene oxide) (PEO)/clay/LiClO4 system. DSC characterization verified that the addition of a small amount of the organic clay reduces the glass‐transition temperature of PEO as a result of the interaction between the negative charge in the clay and the lithium cation. Additionally, the strength of such a specific interaction depends on the extent of PEO intercalation. With respect to the interaction between the silicate layer and the lithium cation, three types of complexes are assumed. In complex I, lithium cation is distributed within the PEO phase. In complex II, lithium cation resides in an PEO/exfoliated‐clay environment. In complex III, the lithium cation is located in PEO/agglomerated‐clay domains. More clay favors complex III over complexes II and I, reducing the interaction between the silicate layers and the lithium cations because of strong self‐aggregation among the silicate layers. Notably, the (PEO)8LiClO4/DDAC‐modified clay (DDAC‐mClay) composition can form a nanocomposite electrolyte with high ionic conductivity (8 × 10?5 S/cm) at room temperature. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1342–1353, 2002  相似文献   

12.
The heat of fusion of poly(ethylene oxide) blocks has been measured by DSC on twelve polystyrene–poly(ethylene oxide) multiblock (AB)n copolymers and two ABA triblock copolymers after conditioning at various times and temperatures. Regardless of the length of polystyrene blocks, copolymers with poly(ethylene oxide) blocks with M?n = 404 showed no heat of fusion, those with M?n = 900 almost no peaks, those with M?n = 1960 small broad peaks, and those with M?n = 5650 clearly observable peaks. the greatest heat of fusion measured for block copolymers was 60–70% of the value for hompolymer. Small-angle x-ray patterns are given. The relation between crystal growth and block length is discussed.  相似文献   

13.
The associative behavior of monodisperse diblock copolymers consisting of a hydrophilic poly(ethylene oxide) block and a hydrophobic poly(epsilon-caprolactone) or poly(gamma-methyl-epsilon-caprolactone) block has been studied in aqueous solution. Copolymers have been directly dissolved in water. The solution properties have been studied by surface tension, in relation to mesoscopic analyses by NMR (self-diffusion coefficients), transmission electron microscopy, and small-angle neutron and X-ray scattering. The experimental results suggest that micellization occurs at low concentration (approximately 0.002 wt %) and results in a mixture of unimers and spherical micelles that exchange slowly. The radius of the micelles has been measured (ca. 11 nm), and the micellar substructure has been extracted from the fitting of the SANS data with two analytical models. The core radius and the aggregation number change with the hydrophobic block length according to scaling laws as reported in the scientific literature. The poly(ethylene oxide) blocks are in a moderately extended conformation in the corona, which corresponds to about 25% of the completely extended chain. No significant modification is observed when poly(gamma-methyl-epsilon-caprolactone) replaces poly(epsilon-caprolactone) in the diblocks.  相似文献   

14.
The gel to sol transition of aqueous solutions of di‐ and triblock copolymers consisting of poly(ethylene oxide) and biodegradable polyesters was studied as a function of temperature. The molecular weight and the chemical composition of the biodegradable blocks, (poly(l ‐lactic acid), poly(dl ‐lactic acid), poly(dl ‐lactic acid‐co‐caprolactone), and poly(dl ‐lactic acid‐co‐glycolic acid)) were varied to investigate the effects of chain packing and relative hydrophobicity on the gel to sol transition. The block copolymers studied formed micelles at lower concentrations in water, while the concentrated solutions experienced a gel to sol transition as the temperature increased. Further increase in temperature resulted in the precipitation of polymers. With increasing molecular weight and chain packing tendency of hydrophobic biodegradable block, the gel to sol transition occurred at lower concentrations and the transition temperature ranged from 0°C to over 90°C in a relatively narrow concentration range. The results obtained in this study confirm the relationship between gelation properties and polymer structure, as well as provide more information for these polymers in drug delivery applications. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 751–760, 1999  相似文献   

15.
以原子转移自由基偶联法合成了多臂星形聚合物S-PEO和星形杂臂共聚物PEO-PS。以傅立叶红外光谱(FT-IR)和核磁共振(1H NMR)分析方法确定了产物的结构。以GPC分析测试了产物的分子量和分子量分布。GPC分析结果表明所得聚合物分子量增大,分子量分布窄,偶联反应效率可高达99%以上。  相似文献   

16.
A methodology for the synthesis of well‐defined poly(ethylene oxide)‐block‐poly(vinyl alcohol) (PEO‐b‐PVA) and PVA‐b‐PEO‐b‐PVA polymers was reported. Novel xanthate end‐functionalized PEOs were synthesized by a series of end‐group transformations. They were then used to mediate the reversible addition–fragmentation chain transfer polymerization of vinyl acetate to obtain well‐defined poly(ethylene oxide)‐b‐poly(vinyl acetate) (PEO‐b‐PVAc) and PVAc‐b‐PEO‐b‐PVAc. When these block copolymers were directly hydrolyzed in methanol solution of sodium hydroxide, polymers with brown color were obtained, which was due to the formation of conjugated unsaturated aldehyde structures. To circumvent these side reactions, the xanthate groups were removed by adding a primary amine before hydrolysis and the products thus obtained were white powders. The polymers were characterized by gel permeation chromatography, 1H NMR spectroscopy and FT‐IR. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1901–1910, 2009  相似文献   

17.
The effects of coronands such as crown ether and azacrown on the conductivity of complexes of LiClO4 with poly[2-(4-vinylphenoxy)-penta(methoxyethoxyethoxyethoxy)cyclotriphosphazene] [poly(STEP)] were investigated. The extent of Tg elevation of poly(STEP)-LiClO4 with 18-crown-6 was comparable to that of the poly(STEP)-LiClO4 system. A similar behavior was observed for the system containing 12-crown-4. However, the increase in Tg values is considerably suppressed when tetraazacyclotetradecane with methoxyethoxy group as a side arm (MTAC) is used. All of the additives are effective to improve the conductivity, and the maximum conductivities of 10−4 S/cm at 30°C and 10−3 S/cm at 90°C have been achieved for the complex of the poly(STEP)-LiClO4-MTAC system with Li+/O = 0.06, which are 3.5–7 times higher than those of poly(STEP)-LiClO4 complexes. From the behaviors of Tg elevation and the conductivity, the role of the coronands for the conduction of the multi-armed poly(STEP)-LiClO4 system is discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.  相似文献   

19.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

20.
The effects caused by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO; Pluronic) copolymers on the structure and stability of dioleoylphosphatidylethanolamine (DOPE) liposomes were studied by means of turbidity, leakage, and cryo-transmission electron microscopy investigations. The results show that by inclusion of Pluronics in the DOPE dispersion it is possible to stabilize the lamellar Lalpha phase and to produce liposomes that are stable and nonleaky at low pH (pH 5). The stabilizing capacity was observed to depend critically on the molecular composition of the Pluronics. Block copolymers with comparably long PPO and PEO segment lengths, such as F127 and F108, most effectively protected DOPE liposomes prepared at high pH from aggregation and subsequent structural rearrangements induced by acidification. A sufficiently long PPO block was found to be the most decisive parameter in order to obtain adequate coverage of the liposome surface at low Pluronic concentrations. Upon increasing the copolymer concentration, however, Pluronics with comparably short PPO and PEO segment lengths, such as F87 and P85, could also be used to stabilize the DOPE liposomes. Essentially the same trends were observed when the Pluronics were added to preformed DOPE liposomes instead of being included in the preparation mixture. In this case the least effective copolymers failed, however, to completely prevent the DOPE liposomes from releasing encapsulated hydrophilic markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号