首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The electrochemical and in-situ surface-enhanced Raman spectroscopy (SERS) techniques were used to investigate the electrooxidation behavior of methanol in acidic, neutral and alkaline media at a Pt-Ru nanoparticle modified glassy carbon (Pt-Ru/GC) electrode. The results showed that methanol could be dissociated spontaneously at the Pt-Ru/GC electrode to produce a strongly adsorbed intermediate, CO. It was found that CO could be oxidized more easily in the alkaline medium than in the acidic and neutral media. The peak potential of methanol oxidation was shifted from 0.663 and 0.708 V in the acidic and neutral media to -0.030 V in the alkaline medium, which is due to that the adsorption strength of CO on the Pt surface in the alkaline medium is weaker than that in the acidic and neutral media. The final product of the methanol oxidation is CO2. However, in the alkaline medium, CO2 produced would form CO3^2- and HCO3^- resulting in the decrease in the alkaline concentration and then in the decrease in the performance of DMFC. Therefore, the performance of the alkaline DMFC is not Stable.  相似文献   

2.
《Analytical letters》2012,45(14):1717-1722
Abstract

An electrode consisting of platinized reticulated vitreous carbon (Pt/RVC) which behaves as a conventional platinized platinum electrode is described. The Pt/RVC electrode has been used to study the products of CO2 reduction by Had at potentials below 0.0V vs. NHE in acidic solution. Formic acid is proposed as the main product of this reaction.  相似文献   

3.
Formic acid oxidation at platinum electrochemically deposited on polished (GC/Pt) and oxidized glassy carbon (GCox/Pt) was examined with the objective of studying the effect of electrochemical treatment of the support on deposition of platinum and on the activity of Pt catalyst. The electrodes were characterised by STM and XPS techniques. The oxidative treatment of the support leads to deposition of smaller Pt particles in comparison with the one on the polished substrate. The XPS spectra indicated the increased fraction of functional (acidic) groups on the treated support as well as the higher fraction of oxygen containing species on Pt catalyst deposited on oxidised referring to Pt deposited on polished substrate.The activity of GCox/Pt electrode is increased by the factor of 2–4 for formic acid oxidation compared to the activity of GC/Pt electrode. This result is explained by the oxidative removal of COad species leading to enhanced amount of Pt free sites available for direct formic acid oxidation to CO2.  相似文献   

4.
Using the rotating ring (platinum)—disk (glassy carbon) electrode methodology, electrocatalytic activity of the microstructured copper centers (imbedded within the polyvinylpyrrolidone polymer matrix and deposited onto the glassy carbon disk electrode) has been monitored during electroreduction of carbon dioxide both in acid (HClO4) and neutral (KHCO3) media as well as diagnosed (at Pt ring) with respect to formation of the electroactive products. Combination of the stripping-type and rotating ring-disk voltammetric approaches has led to the observation that, regardless the overlapping reduction phenomena, the reduction of carbon dioxide at copper catalyst is, indeed, operative and coexists with hydrogen evolution reaction. Using the fundamental concepts of surface electrochemistry and analytical voltammetry, the reaction products (thrown onto the platinum ring electrode) could be considered and identified as adsorbates (on Pt) under conditions of the stripping-type oxidation experiment. Judging from the potentials at which the stripping voltammetric peaks appear in neutral CO2-saturated KHCO3 (pH 6.8), formic acid or carbon monoxide seem to be the most likely reaction products or intermediates. The proposed methodology also permits correlation between the CO2 electroreduction products and the potentials applied to the disk electrode. By performing the comparative stripping-type voltammetric experiments in acid medium (HClO4 at pH 1) with the adsorbates of formic acid, ethanol and acetaldehyde (on Pt ring), it can be rationalized that, although C2H5OH or CH3CHO are very likely CO2-reduction electroactive products, formation of some HCOOH, CH3OH or even CO cannot be excluded.  相似文献   

5.
In this work, Ptpc/Ir/Pt metallic multilayer nanostructured electrodes were prepared. The composition and number of the constituent metal layers were varied and the number of Ir and Pt layers studied were: 1.5:1.5, 1.5:10, 10:1.5, 10:10 and 250:250 Ir and Pt monolayers. The ethanol electrooxidation reaction and its products was studied using electrochemical in situ FTIR technique and could be observed as a selective cleavage of the ethanol CC bond in acidic electrolyte. Neither acetaldehyde nor acetic acid IR band could be observed for ethanol electrooxidation at 1.5 V vs. RHE over Ptpc/Ir250/Pt250 metallic multilayer electrodes. Also, the enhancement on CO2 production over this electrode was more than six times the amount observed using the Ptpc electrodes. Thus, the complete CC cleavage bond in ethanol molecule was observed, leading only CO2 as reaction product.  相似文献   

6.
The electrochemical reduction of CO2 on Sn, Cu, Au, In, Ni, Ru and Pt electrodes in methanol containing 0.1 M sodium perchlorate was studied by cyclic voltammetry and in-situ FTIR spectroscopy. Dissolved CO2 increases the cathodic current at potentials below −1.3 V vs. Ag|0.01 M Ag+ with Sn, Au, Cu, In and Ni electrodes. It is concluded from the FTIR spectra obtained that there is no reduction of CO2 on any of the metals studied, and that the only reaction product detected by Fourier transform (FT) IR spectroscopy, i.e. CO2−3, is formed by reaction of CO2 with hydroxyl anions produced in the electroreduction of residual water.In order to identify the electroreduction products of CO2 it was necessary to obtain the FTIR spectra of sodium oxalate and sodium carbonate in methanol. They were obtained by the electroreduction of oxalic acid and the alkalinization of CO2-saturated methanol respectively. It could be proved that the electroreduction of carboxylic acids to carboxylate anions in organic solvents does not require either a H-chemisorbing metal electrode, or the presence of water in the solvent.  相似文献   

7.
以铂为基底电极,在1-乙基咪唑三氟乙酸盐(HEImTfa)离子液体中电化学合成导电聚吡咯(PPy),制得PPy-HEImTfa/Pt电极;采用循环伏安法研究了PPy-HEImTfa/Pt电极对抗坏血酸的电催化氧化性能.结果表明:PPy-HEImTfa/Pt电极对0.1mo·lL-1抗坏血酸具有较高的电催化氧化活性,与相同条件下硫酸溶液中在铂表面修饰的聚吡咯(PPy-H2SO4/Pt)电极和裸铂电极相比,其氧化峰电位分别降低了0.10和0.19V,氧化峰电流分别增加了3.0和3.6mA.同时采用原位傅里叶变换红外(insitu FTIR)光谱技术对抗坏血酸在PPy-HEImTfa/Pt电极上的电氧化机理进行了研究,结果表明:抗坏血酸在PPy-HEImTfa/Pt电极上首先被氧化为脱氢抗坏血酸,在水溶液中脱氢抗坏血酸迅速发生水合作用形成水合脱氢抗坏血酸,它进一步水解并发生内酯开环反应生成2,3-二酮古洛糖酸;在较高电位下,部分抗坏血酸最终被氧化成CO2.  相似文献   

8.
吕艳卓  徐岩  陆天虹  邢巍  张密林 《化学学报》2007,65(16):1583-1587
直接甲醇燃料电池(DMFC)由于具有较多的优点而受到广泛的关注. 但是碳载Pt (Pt/C)阳极催化剂电催化活性低是限制其应用的一个主要问题. 为了提高Pt/C催化剂对甲醇氧化的电催化性能, 分别用CO2, 空气, H2O2或HNO3对常用作为载体的Vulcan XC-72碳黑进行预处理. 结果表明, 在用CO2, 空气, HNO3, H2O2处理的及未处理的碳黑作载体制得的Pt/C催化剂电极上, 甲醇氧化峰的峰电流密度顺序为39, 33, 32, 20和18 mA•cm-2, 表明用CO2处理的碳载体制备的Pt/C催化剂对甲醇氧化有最好的电催化活性和稳定性. 其主要原因是用CO2处理能减少碳黑表面的含氧基团和增加石墨化程度, 而使碳黑的电阻降低及Pt粒子在碳黑上的分散性变好.  相似文献   

9.
In this work, we examine the electrocatalytic activity of electrodeposited Platinum (Pt)-Nickel (Ni) alloy layers on an inert substrate electrode for methanol oxidation reaction. Analyses using energy-dispersive fluorescent X-ray analysis and powder X-ray diffractometry confirm alloying of Pt with Ni in a range of compositions. Steady-state polarisation measurements in 0.5 M methanol+0.5 M H2SO4 solutions clearly show that the onset of electro-oxidation shifts to less anodic potential values (approximately 160 mV), while also exhibiting current enhancements up to ~15 times the currents obtained for the pure Pt electrodeposit. A linear relationship between the cyclic voltammetric peak (oxidation) current and [MeOH] is observed at a scan rate of 50 mVs–1, thus indicating reduced influence of adsorbed CO (COads) surface poison. A critical composition, Pt (92%)/Ni (8%) [denoted Pt-Ni(3) alloy] is found to exhibit maximum electrocatalytic activity, beyond which the activity drops, whereas pure Ni does not catalyse the reaction. While the promotion of electro-oxidation is understood to be largely due to the alloy catalyst, surface redox species of Ni oxide formed during the electro-oxidation process may also contribute to the oxygenation of COads, thereby enhancing the oxidation current. Plausible mechanisms of methanol oxidation on Pt/ transition metal alloy electrocatalysts are discussed in terms of electron transfer (in the alloy) and the role of Ni oxide species.  相似文献   

10.
Spontaneous modification of polycrystalline Pt by irreversibly adsorbed bismuth was performed in BiCl3 solution in concentrated hydrochloric acid under open-circuit conditions. After spontaneous modification, followed by extensive rinsing with water and drying, the surface was characterized using X-ray photoelectron spectroscopy and electrochemistry. Bi-oxy(chloride), oxide species, and metallic Bi were found at a submonolayer coverage on the Pt surface after spontaneous modification. The electrochemical response of Bi-modified polycrystalline Pt electrode in sulfuric acid solution exhibits a complex multi-peak feature, which is resulting in about constant redox charge (Bi species coverage) in the potential region from 0 to 0.9 V (vs. a standard hydrogen electrode). The spontaneously Bi-modified Pt catalyst in model studies exhibits a superior activity towards formic acid oxidation at fuel cell anode relevant potentials. The catalytic effect of bismuth oxy-species is explained in terms of both inhibition of COad formation and oxidation of COad in reaction with Bi-oxy-species.  相似文献   

11.
Electroplating of WO3-Pt has been carried out using a suitable plating bath solution and optimum working conditions. X-ray and SEM studies of the deposit reveal a smooth and uniform distribution of micro-particles on the surface. New phases of the plated material appear on heat treatment. The electrocatalytic activity of the WO3-Pt co-deposit is considerably higher than for platinum alone. WO3 in the WO3-Pt co-deposit reduces the retardation effect of methanol oxidation by the reaction intermediate observed in the case of Pt alone. WO3-Pt co-deposits exhibit low overpotential for methanol oxidation in both acidic and alkaline media at low temperature and have good corrosion resistance in electrolytic media. The electrochemical parameters for methanol oxidation of these co-deposits depend on trace amounts of the platinum, heat treatment and the microstructure of the coating.  相似文献   

12.
通过循环伏安扫描法制备了PMo12修饰Pt/Pt电极,并研究了该修饰电极在硫酸溶液中的电化学行为。研究结果表明:虽然磷钼酸具有较大的分子尺寸,但在Pt/Pt电极上仍能发生吸附作用,并且由于PMo12在电极上的吸附,降低了Pt/Pt电极上氢区和氧区的荷电量,另外在0.02V左右还观察到磷钼酸的氧化-还原峰。通过稳态极化曲线和循环伏安曲线研究了PMo12修饰Pt/Pt电极对甲醇氧化的电催化作用。测试结果表明:PMo12修饰铂基电极不但对甲醇的电氧化具有较高的活性,而且还有一定的抗CO中毒性。该修饰电极还具有较高的稳定性。  相似文献   

13.
《Electroanalysis》2006,18(9):911-917
Electrooxidation of methanol on glassy carbon (GC) electrode modified by optimum carbon supported Pt electrocatalyst (Pt‐C/GC) in acid media is investigated. The catalyst is prepared by ultrasonicating Pt/C powders in aqueous media. The activity of prepared Pt‐C/GC electrode is studied in potential range of 0–1000 mV (versus SCE) by cyclic voltammetry. The results showed that the Pt/C dispersed layer at the surface of glassy carbon electrode, behaves as an electrocatalyst for the oxidation of methanol in acid medium by optimum loading of Pt (0.2 mg cm?2). The electrochemical properties of prepared electrode are studied under various conditions. However the effect of various parameters in the catalytic enhancement of Pt/C, such as platinum loading, sulfuric acid concentration, different scan rates, different final potentials, and medium temperature are considered and examined.  相似文献   

14.
ABSTRACT

High fluidity solvents, such as supercritical fluids, have several advantages over traditional solvents as polymerization media, such as offering a more environmentally-friendly reaction media, providing increased reaction rates, and simplifying the separation and purification of polymers. In this study, a traditional glass-ionomer polymer, poly(acrylic acid-co-itaconic acid) (PAA/IA) was synthesized by using mixtures of CO2 and methanol as the reaction solvent and was characterized by 1H-NMR, FT-IR, GPC, and viscometry. The mechanical and working properties of the glass-ionomer cements, prepared by mixing aqueous solutions of the polymers with Fuji II glass powder, were evaluated for compressive strength (CS), diametral tensile strength (DTS) and flexural strength (FS), as well as setting time and working time. The results showed that the polymerization reaction in CO2/methanol mixtures was faster and had higher conversion than the polymerization reaction in water. The glass-ionomer formulations made from the copolymer prepared under SC conditions showed higher CS, comparable FS and DTS compared with those made from the same polymer prepared in water. Both of the synthesized copolymers had significantly higher CS and FS than Fuji II. The working properties of PAA/IA made in CO2/methanol met the requirement of ANSI/ADA No. 96.  相似文献   

15.
The electrochemical reduction of CO2 with a Cu electrode in methanol was investigated with sodium hydroxide supporting salt. A divided H-type cell was employed; the supporting electrolytes were 80 mmol dm−3 sodium hydroxide in methanol (catholyte) and 300 mmol dm−3 potassium hydroxide in methanol (anolyte). The main products from CO2 were methane, ethylene, carbon monoxide, and formic acid. The maximum current efficiency for hydrocarbons (methane and ethylene) was 80.6%, at −4.0 V vs Ag/AgCl, saturated KCl. The ratio of current efficiency for methane/ethylene, r f(CH4)/r f(C2H4), was similar to those obtained in LiOH/methanol-based electrolyte and larger relative to those in methanol using KOH, RbOH, and CsOH supporting salts. In NaOH/methanol-based electrolyte, the efficiency of hydrogen formation, a competing reaction of CO2 reduction, was suppressed to below 4%. The electrochemical CO2 reduction to methane may be able to proceed efficiently in a hydrophilic environment near the electrode surface provided by sodium cation.  相似文献   

16.
Electrochemical CO2 reduction (CO2R) in acidic media with Cu-based catalysts tends to suffer from lowered selectivity towards multicarbon products. This could in principle be mitigated using tandem catalysis, whereby the *CO coverage on Cu is increased by introducing a CO generating catalyst (e.g. Ag) in close proximity. Although this has seen significant success in neutral/alkaline media, here we report that such a strategy becomes impeded in acidic electrolyte. This was investigated through the co-reduction of 13CO2/12CO mixtures using a series of Cu and CuAg catalysts. These experiments provide strong evidence for the occurrence of tandem catalysis in neutral media and its curtailment under acidic conditions. Density functional theory simulations suggest that the presence of H3O+ weakens the *CO binding energy of Cu, preventing effective utilization of tandem-supplied CO. Our findings also provide other unanticipated insights into the tandem catalysis reaction pathway and important design considerations for effective CO2R in acidic media.  相似文献   

17.
According to most of works in the literature, adsorbed carbon monoxide at Pt(1 1 0) electrodes in acid media presents only linear bonded (COL) so-called, atop geometry. In the present work, the formation of bridge bonded carbon monoxide (COB) is shown via in situ infrared FT spectra, measured on a Pt(1 1 0) electrode covered with 25% CO, in HClO4 solutions. For the first time, the inter conversion between atop and bridge bonded CO at potentials in the hydrogen adsorption region is reported in acid solution. Band intensity and band center frequency indicate dipole–dipole coupling effects in spite of the low CO total coverage.  相似文献   

18.
Methanol is a very useful platform molecule and liquid fuel. Electrocatalytic reduction of CO2 to methanol is a promising route, which currently suffers from low efficiency and poor selectivity. Herein we report the first work to use a Mo‐Bi bimetallic chalcogenide (BMC) as an electrocatalyst for CO2 reduction. By using the Mo‐Bi BMC on carbon paper as the electrode and 1‐butyl‐3‐methylimidazolium tetrafluoroborate in MeCN as the electrolyte, the Faradaic efficiency of methanol could reach 71.2 % with a current density of 12.1 mA cm?2, which is much higher than the best result reported to date. The superior performance of the electrode resulted from the excellent synergistic effect of Mo and Bi for producing methanol. The reaction mechanism was proposed and the reason for the synergistic effect of Mo and Bi was discussed on the basis of some control experiments. This work opens a way to produce methanol efficiently by electrochemical reduction of CO2.  相似文献   

19.
Electrocatalytic oxidation of carbon monoxide and methanol at Pt nanoparticles confined in mesoporous molecular sieve SBA-15 was studied by using cyclic voltammetry and in situ FTIR spectroscopy. Cyclic voltammetric studies revealed that the Pt nanoparticles confined in SBA-15 exhibit a high activity in the presence of hydrated phase consisting of SiO2 in the SBA-15. In situ FTIR spectroscopy results discovered that IR absorption of CO adsorbed on Pt nanoparticles confined in SBA-15 has been enhanced 11-fold, and the full-width at half-maximum of the CO band is significantly increased, in comparison with IR feature of CO adsorbed on a bulk Pt electrode. The linearly adsorbed CO species is the only intermediate derived from dissociative adsorption of methanol, which is more readily oxidized to form CO2 in the aid of the active oxide in SBA-15.This paper is dedicated to Professor G. Horanyi on the occasion of his 70th birthday and in recognition of his outstanding contribution to electrochemistry  相似文献   

20.
The factors determining pH effects on principal catalytic reactions in low-temperature fuel cells (oxygen reduction, hydrogen oxidation, and primary alcohols oxidation) are analyzed. The decreasing of hydrogen oxidation rate when passing from acidic electrolytes to basic ones was shown to be due to the electrode surface blocking by oxygen-containing species and changes in the adsorbed hydrogen energy state. In the case of oxygen reduction, the key factors determining the process’ kinetics and mechanism are: the O2 adsorption energy, the adsorbed molecule protonation, and the oxygen reaction thermodynamics. The process’ high selectivity in acidic electrolytes at platinum electrodes is caused by rather high Pt-O2 bond energy and its protonation. The passing from acidic electrolytes to basic ones involves a decrease in the oxygen adsorption energy, both at platinum and nonplatinum catalysts, hence, in the selectivity of the oxygen-to-water reduction reaction. The increase in the methanol and ethanol oxidation rate in basic media, as compared with acidic ones, is due to changes in the reacting species’ structure (because of the alcohol molecules dissociation) on the one hand, and active OHads species inflow to the reaction zone, on the other hand. In the case of ethanol, the above-listed factors determine the process’ increased selectivity with respect to CO2 at higher pHs. Based on the survey and valuation, priority guidelines in the electrocatalysis of commercially important reactions are formulated, in particular, concepts of electrocatalysis at nonplatinum electrode materials that are stable in basic electrolytes, and approaches to the practical control of the rate and selectivity of oxygen reduction and primary alcohols oxidation over wide pH range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号