首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel unsymmetrical multidentate ligand namely; N,N'-dimetyl-N,N'-didecyldithiodiglycolamide (DMD3TDGA) was synthesized and used as agent for the selective extraction of palladium(II) from hydrochloric acid solutions. A systematic investigation was carried out on the extraction of Pd(II) using DMD3TDGA. The quantitative extraction of Pd(II) with DMD3TDGA in n-dodecane is observed at ~4 M HCl. The main extracted species of Pd(II) is PdCl2. DMD3TDGA and IR spectra of the extracted species were investigated. The extraction of palladium(II) from various concentrations of hydrochloric acid solutions in the presence of metal ions, such as Pt(IV), Rh(III), Cr(II), Ni(II), Fe(III), Nd(III), Zr(II), and Mn(II) was carried. DMD3TDGA showed very high selectivity and extractability for Pd(II). Quantitative back extraction of Pd(II) was obtained in single contact using thiourea solution. The results obtained indicated that, excellent separation of Pd(II) from the investigated metal ions can be achieved. Five successive cycles of extraction/back-extraction, indicating excellent stability and re-utilization of this new extractant can be used for selective separation of Pd(II) from other elements in hydrochloric acid medium.  相似文献   

2.
This work focuses on the application of polymer inclusion membrane (PIM) with tricaprylmethylammonium thiosalicylate, [A336][TS] (TOMATS), a thiol-containing task-specific ionic liquid for the transport of Pd(II) ions from aqueous solutions. 0.3 M thiourea in 0.1 M hydrochloric acid was found the most effective stripping phase in the transport of Pd(II) from membrane phase containing TOMATS. Separation of Pd(II) ions was also carried out from hydrochloric acid solution containing Pt(IV), Fe(III), Ni(II), and Mn(II). Pd(II) ions were preferably transported in the presence of these metal ions. The separation coefficients followed the order: S Pd/Pt < S Pd/Fe < S Pd/Ni < S Pd/Mn. [A336][TS] proved to be an excellent ion carrier for Pd(II) from hydrochloric acid solution. The results also showed that transport efficiency of the PIM was reproducible and it can be useful for the development of the simple and highly effective method of Pd(II) recovery from leach liquor of spent catalysts.  相似文献   

3.
The catalytic system Pd/C—HCl is highly active in the reduction of mandelic acid derivatives to phenylacetic acid derivatives with carbon monoxide when the aromatic ring is para-substituted with a hydroxy group. Typical reaction conditions are: 70–110 °C, 20–100 atm of carbon monoxide, benzene—ethanol as reaction medium, substrate/Pd=102–104/1, HCl/substrate=0.3–0.8/1. [Pd] = 10−2 −10−4 M. When the catalytic system is used in combination with PPh3 a slightly higher activity is observed. Comparable results are observed when using a Pd(II) catalyst precursor such as PdX2, in combination with PPh3, or PdX2(PPh3)2 (XCl, AcO). When operating at 110 °C, decomposition to metallic palladium occurs. Pd(II) complexes with diphosphine ligands, such as diphenylphosphinemethane, -ethane, -propane or -butane, do not show any catalytic activity and are recovered unchanged. These observations suggest that Pd(0) complexes play a key role in the catalytic cycle. The proposed catalytic cycle proceeds as follows: the chloride ArCHClCOOR, formed in situ upon reaction of ArCHOHCOOR with hydrochloric acid, oxidatively adds to a Pd(0) species with formation of a catalytic intermediate having a Pd—[CH(Ar)COOR] moiety, which inserts a CO molecule, yielding an acyl intermediate of the type Pd—[COCH(Ar)COOR]. The nucleophilic attack of H2O on the carbon atom of the carbonyl ligand gives back the Pd(0) complex to the catalytic cycle and yields a phenylmalonic acid derivative, which produces the final product, ArCH2COOR, upon CO2 evolution. Alternatively, protonolysis of the intermediate having a Pd—[CH(Ar)COOR] moiety yields directly the final product and a Pd(II) species, which is then reduced by CO to Pd(0). Moreover, no catalytic activity is observed when the Pd/C—HCl system is used in combination with any one of the above diphosphine ligands, probably because these ligands block the sites on the catalyst able to promote the catalytic cycle or because they prevent the reduction of Pd(II) to Pd(0). The influence of the following reaction parameters has been studied: concentration of HCl, PPh3, palladium and substrate, pressure of carbon monoxide, the temperature, reaction time and solvent. The results are compared with those obtained in the carbonylation of aromatic aldehydes to phenylacetic acid derivatives catalyzed by the same system, for which it has been proposed that the catalysis occurs via carbonylation of the aldehyde to a mandelic acid derivative as an intermediate, which is further reduced with CO to yield the final product.  相似文献   

4.
Palladium is determined by reaction with tin(II) chloride and rhordamine-6G in hydrochloric acid medium, flotation of the ion-association complex, [(R6G+)2Pd (SnCl?3)4]·[(R6G+) (SnCl?3] with di-isopropyl ether, and dissolution in acetone for spectrophotometry. The molar absorptivity is 2.84 x 105 l mol?1 cm?1 at 530 nm; Beer's law is obeyed in the range 0.05–0.35 μg Pd ml?1. Other platinum metals and silver interfere. Traces of palladium in silver metal are determined after extraction of palladium with dimethylglyoxime in chloroform.  相似文献   

5.
The use of [bmim][BF4], [bmim][PF6], and [bmim][Cl] ILs as the solvents in Pd(II)‐catalyzed enyne cyclization of 2′‐alkenyl 2‐alkynoates in the presence of cupric chloride has been investigated. The Z/E stereoselectivity of the reaction could range from 90:10 to 4:96 by tuning the amount of LiCl in ILs. After the separation of the product, the IL–catalyst mixture could be recovered by treatment with hydrochloric acid and recycled several times without an obvious loss of catalytic activity.  相似文献   

6.
Oxidation of propylene glycol and related compounds to pyruvic acid was carried out in aqueous phase at 90 °C with a controlled pH of 8 in the presence of Pd/C modified by Pb, Bi and/or Te as additives. Oxidation of propylene glycol was observed on Pd/C at both the primary and secondary hydroxyl groups to yield lactic acid, hydroxyacetone and pyruvic acid with low selectivities. Pd/C, which alone was inactive in the oxidation of lactic acid, bound Pb on the metallic Pd with a strong interaction. The resultant Pb/Pd/C revealed activity for the selective conversion of lactic acid into pyruvic acid. A trace amount of the additive Pb as low as the atomic ratio Pb/Pd = 0.05, was enough to afford pyruvic acid, and the initial rate of the oxidation showed a maximum at Pb/Pd=0.3. Similar catalysts gave results as follows: Pb/Pt/C, highly active, but less selective; Te/Pd/C, highly selective to pyruvic acid with mild activity; Bi/Pd/C, moderate in both activity and selectivity. Commercially available Pb/Pd/CaCO3 (Lindlar catalyst) and Pb/Pd/Al2O3 were also active, giving 60% yield of pyruvic acid.  相似文献   

7.
A new method for the separation of trace amounts of palladium from hydrochloric acid and potassium thiocyanate media has been established based on the formation of an ion-pair complex of palladium thiocyanate anion Pd(SCN)4 2– and the cationic potassium complex of dicyclohexyl-18-crown-6 (DC18C6) in chloroform. The effect of various factors (solvent, crown ether, potassium thiocyanate, hydrochloric acid, reagent concentration, shaking time, phase volume ratio, composition of the extracted species, foreign ions, etc.) on the extraction and back-extraction of palladium has been investigated. The method can be combined with subsequent FAAS determination of palladium. The procedure was applied to determine palladium traces in chloroplatinic acid and rhodium chloride.  相似文献   

8.
It is shown that stable metal complexes with ammonium pyrrolidine dithiocarbamate (APDC) are formed in strongly acidic (0.5–6 M) solutions and can be extracted into methyl isobutyl ketone (MIBK), although APDC is normally used for extractions from solutions at pH 2–12. Percentage extraction curves are presented for 24 elements (Ag, As, Au, Bi, Cd, Co, Cu, Fe, Ga, Ge, Hg, In, It, Ni, Os, Pb, Pd, Pt, Rh, Ru, Sb, Sn, Tl and Zn) from solutions of hydrochloric or nitric acid with and without addition of APDC. Some elements (e.g., Fe, Ga, Ge, In and Au) show identical extractions as their chloro complexes in hydrochloric acid with or without APDC. Others (e.g., Ni, Cu, Pd, As, Ag, Sb, It, Hg and Bi) are strongly extracted (Kd ? 20), from 2 M hydrochloric or nitric acid in the presence of APDC. Palladium (Kd = 8000), Sb (Kd = 10 000), and Bi (Kd = 3500) are particularly easily extracted. The potential of the extraction system was tested by extraction and quantification of palladium from the CANMET standard ore PTC-1; the mean value found was 12.55 μg g?1 (ppm) palladium with a relative standard deviation of 7.6% (n = 12) and a relative error of 1.2% from the recommended value of 12.70 μg g?1.  相似文献   

9.
Since H2O2 decomposition can result in selectivity/yield loss in the direct H2O2 synthesis process from H2 and O2 over supported Pd catalysts, it is important to have an enhanced understanding about the factors affecting the H2O2 decomposition reaction. Herein, detailed studies have been undertaken to investigate the influence of different factors, such as (a) nature and concentration of acid in reaction medium, (b) nature and concentration of halide in presence and absence of acid in reaction medium, (c) pretreatment procedures and (d) catalyst modification by incorporation of different halides, on the H2O2 decomposition reaction over a 5% Pd/C catalyst in aqueous medium at 25 °C. This study has shown that the H2O2 decomposition activity is profoundly influenced by all the above factors. The effectiveness of the acids in suppressing the H2O2 decomposition activity decreased in the following order: hydroiodic acid > hydrobromic acid > hydrochloric acid  acetic acid > phosphoric acid > sulfuric acid > perchloric acid. The ability of the acid to decrease the H2O2 decomposition activity was found to very strongly depend on the nature of its associated anion. Halides, such as iodide, bromide and chloride were particularly effective in suppressing the H2O2 decomposition activity. Oxidation pretreatment of the catalyst was found to strongly suppress its H2O2 decomposition activity, while a reduction treatment was found to promote its activity. A gradual decrease in the H2O2 decomposition activity of the catalyst was observed with each successive usage due to in situ sub-surface oxidation of Pd by H2O2. Halide incorporation either via the reaction medium or prior catalyst modification had a similar qualitative effect on the H2O2 decomposition activity.  相似文献   

10.
The separation of platinum and palladium, by adsorption onto weak base anion exchange resins, Amberlite XE 299, or ionex (derived from Amberlite XE-305) from 1M hydrochloric acid, followed by ligand substitution with sulfur nucleophiles is described.

In the thiourea system, cationic thiourea complexes are produced, which cannot be readsorbed into the resin. In the thiocyanate system the formation of Pd(SCN)4 2- is favored in both solution and polymer phases. The Pd(SCN)4 2-. readsorption into the anion exchange resin is the basis for the separation of platinum from palladium.  相似文献   

11.
Palladium and iridium are separated by passing an ammoniacal solution of the chlorides over Amberlite IR-100 resin. Palladium is retained as Pd(NH3)4+2 while iridium, as IrCl6-3, passes through the column quantitatively. Palladium is then removed from the column by elution with 1 M hydrochloric acid.  相似文献   

12.
Highly monodisperse spherical 3 nm Pd–Cu alloy nanoparticles (NPs) were synthesized in high yield through the coreduction of [Pd(acac)2] (acac=acetylacetonate) and [Cu(acac)2] in nonhydrolytic solutions by using trioctylamine and oleic acid. The relative compositions of Pd and Cu could be tuned by controlling the molar ratios between the metal precursors in the raw solutions. The carbon‐supported Pd–Cu NPs (Pd–Cu/C) were chemically dealloyed by acetic acid washing, which resulted in the formation of porous structures. The prepared Pd–Cu/C catalysts exhibited at least threefold enhancement of Pd mass activities compared with a commercial Pd/C catalyst toward formic acid oxidation in an acidic medium, and also showed outstanding electrocatalytic stabilities. The improved electrocatalytic properties of the Pd–Cu NPs are attributed to the presence of a large number of active sites on their surfaces owing to their small particle sizes and chemically dealloyed porous structures.  相似文献   

13.
A method for determining the oxygen content of the high-temperature superconductor YBa2Cu3O6.5+x is described. The superconductor is dissolved in 4.4 M hydrobromic acid, forming bromine. The mixture is then diluted with hydrochloric acid to obtain a solution of bromine and Cu(II) in 0.44 M hydrobromic acid and 1.1 M hydrochloric acid. As(III) is added in slight excess of that required to react with the bromine and the unreacted As(III) is determined by titration with potassium bromate. Oxygen does not interfere. The results of this method are in agreement with those of other iodimetric procedures. The dissolution of the superconductor in 4.4 M hydrobromic acid is much faster than in hydrochloric acid, the medium used in one iodimetric technique. YBa2Cu3O6.5+x sintered fibers and powder samples weighing from ca. 0.5 to 200 mg were analyzed for oxygen content.  相似文献   

14.
徐庶亮  楚文玲  杨维慎 《催化学报》2010,31(11):1342-1346
 采用不同负载顺序或制备过程制备了 Pd-SiW12/SiO2 催化剂, 考察了它们在乙烯直接氧化制乙酸反应中的催化性能. 结果表明, Pd 和 SiW12 的负载顺序与 Pd 负载后的处理条件对 Pd-SiW12/SiO2 催化剂上 Pd 的分散度影响较大, 但对催化剂表面 B 酸量影响不大, 而 Pd 分散度较高时, 相应催化剂活性较高. 将 Pd 和 SiW12 同时负载于 SiO2 上时, 催化剂表现出较高的催化乙烯直接氧化制乙酸反应活性.  相似文献   

15.
Bimetallic palladium–nickel (PdNi2) alloy catalyst has been prepared for the electrooxidation of formic acid through a simple electrodepositing approach. Scanning Electron Microscopy and X-ray Diffraction revealed that the particle morphology and the crystalline lattice of PdNi2 alloy were highly different from those of Pd. Although the PdNi2 catalyst had less noble Pd content, the cyclic voltammetry and chronoamperometry results clearly demonstrated that its catalytic activity was significantly higher than that of Pd. The novel enhancement of catalytic activity was mainly ascribed to the weak absorption strength of intermediates on Pd through the interaction between Pd and additive Ni, which facilitated the formic acid oxidation through direct pathway.  相似文献   

16.
The characteristics of anodic electrochemical dissolution of chalcopyrite (CuFeS2) powder in hydrochloric acid medium with sodium chloride have been studied. Cyclic voltammetry and chronopotentiometry of immobilized microparticles using paraffin-impregnated graphite electrode was employed. Present work is focused on electrochemical identification of chalcopyrite cathodic and anodic reaction products within the potential range of −0.7 to +0.8 V (vs. SCE) in hydrochloric acid solution containing sodium chloride and/or copper(II) chloride.  相似文献   

17.
A new method of synthesis of phenyl glycine labelled with deuterium and tritium was elaborated. Labelled phenyl glycine was obtained by isotope exchange method between phenyl glycine and deuterated or tritiated water at elevated temperature in hydrochloric acid medium using K2PtCl4 as a catalyst. 37 GBq /1 Ci/ HTO was used for the synthesis of tritiated phenyl glycine and labelled product with specific activity of 185 MBq/mole /5 mCi/mole/ was obtained.  相似文献   

18.
The possibility of one-pot synthesis of bis-1,5,3-dithiazepanes by multicomponent condensation of amines (NH4Cl, hydrazine, and 1,2-ethylenediamine) with formaldehyde and 1,2-ethanedithiol was described. Their sorption properties relative to Ag(I) and Pd(II) were studied by a static method. It was shown that at room temperature bis-1,5,3-dithiazepanes recovered with high efficiency silver(I) and palladium(II) from nitrate solutions and hydrochloric acid solutions, respectively.  相似文献   

19.
Supports are commonly implemented in the industrial application of heterogeneous catalysts to improve the stability and recyclability of catalysts. The supported catalysts often show the enhanced activity and selectivity in various catalytic reactions. However, the specific contributions of electronic and steric effects to a catalytic system often remain elusive due to the lack of well-defined model systems. In this work, two types of uniform Pd nanocrystals covered by {111} facets in tetrahedral and octahedral shapes, respectively, are synthesized with identical chemical environment and loaded on TiO2 supports to form hybrid structures (Pd{111}-TiO2) towards the application of formic acid decomposition. Our observation suggests that the polarization effect at the interface of Pd-TiO2 enhances its activity in formic acid decomposition. Moreover, the Pd tetrahedrons-TiO2 hybrid structure whose Pd{111}-TiO2 interface possesses a larger angle shows higher catalytic activity, owing to the reduced steric effect as compared to Pd octahedrons-TiO2. This study reveals the nature of interface effects in formic acid decomposition, and provides a guidance for the related catalyst design.  相似文献   

20.
Thin films of pure Pd and composite of Pd and 1% multiwalled carbon nanotube have been obtained on glassy carbon electrodes by borohydride reduction method and investigated as electrocatalysts for the oxidation of phenol in acid medium at 25 °C, using cyclic voltammetry (CV), chronopotentiometry, and high-performance liquid chromatography. The CV study showed that both the electrocatalysts are quite stable and active for the phenol oxidation in acid medium. Further, these electrodes do not seem to undergo deactivation due to intermediates and products formed during the phenol oxidation. With the increase in phenol concentration from 2 to 25 mM, the peak current (I p) increases initially, reaches maximum at about 15 mM, and tends to decrease thereafter. The peak potential (E p) value was found to be practically unchanged with phenol concentration. The rate for phenol oxidation (I p) at the surface of both the electrocatalysts increased with the decrease in pH of the reaction mixture. The electrocatalytic activity of the composite electrode was, however, higher than that of pure Pd under similar experimental conditions. Benzoquinone and hydroquinone were identified as the major phenol degradation intermediate products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号