首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
An investigation into the preparation of poly(9‐alkyl‐9H‐carbazole‐3,6‐diyl)s with palladium catalyzed cross‐coupling reactions of 3‐halo‐6‐halomagnesio‐9‐alkyl‐9H‐carbazoles, generated in situ from their corresponding 3,6‐diiodo‐ and 3,6‐dibromo‐derivatives was undertaken. Monomers with a range of alkyl group substituents with different steric requirements were investigated and their effects on the polymerization were studied. The effects of the nature of halogen substituents on the polymerization reaction were also investigated. Structural analysis of the polymers revealed exclusive 3,6‐linkage between consecutive carbazole repeat units on the polymer chains. The physical properties of these polymers were investigated with spectroscopic, thermal gravimetric analysis, and electrochemical studies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6041–6051, 2004  相似文献   

2.
Pasteur carried out pioneering work on cinchona alkaloids and their derivatives and his studies led to important discoveries. He examined crystals of cinchona alkaloids for his correlation of crystal hemihedrism with molecular chirality, studies that led Pasteur to the discovery of physicochemical differences between diastereoisomeric salts of tartaric acids with optically active cinchona bases, an important insight into fundamentals of molecular chirality. These physicochemical differences also led to Pasteur’s invention of the vital method of racemate resolution through diastereoisomeric derivatives. Pasteur clarified the confusion around the cinchona alkaloids by elucidating their identities and relations. He discovered the conversion of the major cinchona alkaloids to quinicine and cinchonicine, a finding subsequently of considerable importance in studies of the structure and synthesis of the major cinchona alkaloids. The reaction producing quinicine and cinchonicine led Pasteur to the discovery of the racemization of tartaric acid and the finding of meso‐tartaric acid, fundamental breakthroughs in the development of stereochemistry.  相似文献   

3.
The encouraging selectivity of copper oxides for the electroreduction of CO2 into ethylene and alcohols has led to a vivid debate on the possible relation between their operando (sub-)surface oxidation state (i. e. fully reduced or partially oxidized) and this distinct reactivity. The high roughness of the Cu oxides used in previous studies on this matter adds complexity to this controversy and motivated us to prepare quasi-planar Cu2O thin films that displayed a CO2 reduction selectivity similar to that of oxide-derived copper catalysts reported in previous studies. Most importantly, when the post-mortem thin films were transferred for characterization in an air-free environment, X-ray photoelectron spectroscopy measurements confirmed their complete reduction in the course of the CO2 reduction reaction. Thus, our results indicate that the selectivity of the Cu oxides featured in previous studies stems from their enhanced roughness, highlighting the importance of controlled sample transfer upon post-mortem characterization with ex situ techniques.  相似文献   

4.
Abstract

Molecular Mechanics, Monte Carlo and Molecular Dynamics simulations on free and complexed crown ethers, on bicyclic cryptands and cryptates provide deeper insights into their conformational and recognition properties and allow to address the questions of preorganisation, complementarity, and binding selectivity. Alternatively, references to experimental data allow to outline present theoretical and computational limitations. Of particular interest are the microscopic pictures obtained in solution, which demonstrate the importance of solvent and environment effects on the precise structure of free and complexed receptors, and on their dynamics. Quantitative insights into relative free energies in solution represents a most promising breakthrough for computational studies in molecular recognition.  相似文献   

5.
Ocotillol‐type saponins have a wide spectrum of biological activities. Previous studies indicated that the configuration at the C24 position may be responsible for their stereoselectivity in pharmacological action and pharmacokinetics. Natural ocotillol‐type saponins share a 20(S)‐form but it has been found that the 20(R)‐stereoisomers have different pharmacological effects. The semisynthesis of 20(R)‐ocotillol‐type saponins has not been reported and it is therefore worthwhile clarifying their crystal structures. Two C24 epimeric 20(R)‐ocotillol‐type saponins, namely (20R,24S)‐20,24‐epoxydammarane‐3β,12β,25‐triol, C30H52O4, (III), and (20R,24R)‐20,24‐epoxydammarane‐3β,12β,25‐triol monohydrate, C30H52O4·H2O, (IV), were synthesized, and their structures were elucidated by spectral studies and finally confirmed by single‐crystal X‐ray diffraction. The (Me)C—O—C—C(OH) torsion angle of (III) is 146.41 (14)°, whereas the corresponding torsion angle of (IV) is −146.4 (7)°, indicating a different conformation at the C24 position. The crystal stacking in (III) generates an R44(8) motif, through which the molecules are linked into a one‐dimensional double chain. The chains are linked via nonclassical C—H…O hydrogen bonds into a two‐dimensional network, and further stacked into a three‐dimensional structure. In contrast to (III), epimer (IV) crystallizes as a hydrate, in which the water molecules act as hydrogen‐bond donors linking one‐dimensional chains into a two‐dimensional network through intermolecular O—H…O hydrogen bonds. The hydrogen‐bonded chains extend helically along the crystallographic a axis and generate a C44(8) motif.  相似文献   

6.
We synthesised a library of cis- and trans-cyclic dipeptides and evaluated their efficacy as catalysts in the asymmetric Weitz-Scheffer epoxidation of trans-chalcone. A thorough investigation relying on structure-activity studies and computational studies provided insights into the mechanism of the process. Our results revealed some structural features required for efficient conversion and for introduction of chirality into the product. The cyclic dipeptide acts as a catalyst by templating a supramolecular arrangement at the aqueous-organic interface required for efficient transformations to occur. Among all cyclic dipeptides investigated, cyclo(Leu-Leu) was the most efficient supramolecular catalyst.  相似文献   

7.
We present an open source tool able to describe intermolecular electrostatic interactions within the framework of the effective fragment potential (EFP) method. Complex molecular structure is subdivided into compact rigid fragments and parameters of their interactions are obtained from ab initio calculations. Automatic procedure allows for searching of these parameters into the existing database and merge new fragments into it. A set of standard fragments useful for the studies of organic semiconductors is also provided. Input files both for purely EFP and hybrid QM/MM calculations can be generated. The program is written in python and freely available on GitHub: https://github.com/ale-odinokov/pyEFP © 2017 Wiley Periodicals, Inc.  相似文献   

8.
Silver and copper nanoparticles were produced by an ecologically safe metal vapor synthesis (MVS) method using acetone as an organic dispersion medium. Transmission electron microscopy (TEM) showed that the specimens are spherical and polydisperse, and their average size is 2.5 nm for silver nanoparticles (Ag NPs) and 2.6 nm for copper nanoparticles (Cu NPs). X-ray photoelectron spectroscopy analyses showed that the state of silver in the nanoparticles is close to that of silver in the Ag0 state, whereas copper black contains two oxidized states of the metal—Cu+ and Cu2+. Biological in vitro studies demonstrated that the nanoparticles have antibacterial activity against Gram-positive and Gram-negative bacterial species. Cu NPs exhibited more prominent antibacterial effects and induced significant growth inhibition of Bacillus cereus and Escherichia coli. Both types of nanoparticles showed anticancer properties in vitro. Cu NPs induced intense cytotoxicity in cancer and normal fibroblasts in vitro cultures, but their inhibitory effect against noncancerous cells was milder compared with cancer cell lines. Ag NPs demonstrated selective cytotoxicity against human lung and cervical adenocarcinoma cell lines. Further in vitro studies indicated that the mechanism of Ag NPs and Cu NPs anticancer effects involves induction of apoptosis. The present study describes a green synthesis approach for production of biologically active silver and copper nanoparticles and highlights their potential for medical application.  相似文献   

9.
An enquiry is presented into the nature and origin of thermoreversible gelation of poly(vinyl chloride) (PVC). In line with a previous paper it is demonstrated by direct x-ray diffraction evidence that the origin of the gelation is crystallization, and that this crystallinity can be conspicuously apparent even for the usual technological polymer. In addition some unusual diffraction effects become apparent such as do not obviously follow from existing notions of the PVC structure. Combined infrared dichroism and x-ray studies revealed that these new effects are attributable to a two-component nature of the crystallinity where the components are distinguished by their orientation behavior, lateral extension, and possibly morphology of the crystallites. Some of the crystals orient with their a axes (type A crystals) and some with their c axes (type B crystals) along the stretch direction. Other more complex orientability differences are also manifest during film formation. Crystals B are smaller, and are believed to correspond to the network forming junctions, hence to fringed micellar crystals. Crystals A have a less evident connection with the network and are hypothesized to be of lamellar character, the behavior of which is closely simulated by lamellar crystal additives (stabilizer crystals). High-temperature x-ray work revealed no melting of crystals even in the temperature range where endotherms appear in the thermograms.  相似文献   

10.
The design of multi-target ligands has become an innovative approach for the identification of effective therapeutic treatments against complex diseases, such as cancer. Recent studies have demonstrated that the combined inhibition of Hsp90 and B-Raf provides synergistic effects against several types of cancers. Moreover, it has been reported that PDHK1, which presents an ATP-binding pocket similar to that of Hsp90, plays an important role in tumor initiation, maintenance and progression, participating also to the senescence process induced by B-Raf oncogenic proteins. Based on these premises, the simultaneous inhibition of these targets may provide several benefits for the treatment of cancer. In this work, we set up a design strategy including the assembly and integration of molecular fragments known to be important for binding to the Hsp90, PDHK1 and B-Raf targets, aided by molecular docking for the selection of a set of compounds potentially able to exert Hsp90-B-Raf-PDHK1 multi-target activities. The designed compounds were synthesized and experimentally validated in vitro. According to the in vitro assays, compounds 4 a , 4 d and 4 e potently inhibited Hsp90 and moderately inhibited the PDHK1 kinase. Finally, molecular dynamics simulations were performed to provide further insights into the structural basis of their multi-target activity.  相似文献   

11.
Platinum metal complexes are the most common chemotherapeutics currently used in cancer treatment. However, the frequent adverse effects, as well as acquired resistance by tumor cells, urge the development of effective alternatives. In the recent past, copper complexes with Schiff base ligands have emerged as good alternatives, showing interesting results. Accordingly, and in continuation of previous studies in this area, three new camphoric acid-derived halogenated salen ligands and their corresponding Cu (II) complexes were synthesized and their antitumor activity was evaluated in order to determine the influence of the type and number of halogens present (Br, Cl). The in vitro cytotoxic activity was screened against colorectal WiDr and LS1034 and against breast MCF-7 and HCC1806 cancer cell lines. The results proved the halogenated complexes to be very efficient, the tetrachlorinated Cu (II) complex being the most promising, presenting IC50 of 0.63–1.09 μM for the cell lines studied. The complex also shows selectivity to colorectal cancer cells compared to non-tumor colon cells. It is worth highlighting that the tetrachlorinated Cu (II) complex, our most efficient complex, shows a significantly more powerful antitumor effect than the reference drugs currently used in conventional chemotherapy. The halogenated salen and corresponding complexes were also screened for their antimicrobial activity against four bacterial species-Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa-and four fungal species-Candida albicans, Candida glabrata, Aspergillus fumigatus and Alternaria alternata. The compounds were found to exhibit moderate to strong antibacterial activity against the bacterial strains studied. NMR studies and theoretical calculations provided some insight into the structure of the ligands and copper complexes. Considering the results presented herein, our work validates the potential use of copper-based chemotherapeutics as alternatives for cancer treatment.  相似文献   

12.
Cancer remains a major global malaise requiring the advent of new, efficient and low‐cost treatments. Photodynamic therapy, which combines a photosensitizer and photons to produce cytotoxic reactive oxygen species, has been established as an effective cancer treatment but has yet to become mainstream. One of the main limitations has been the paucity of photosensitizers that are effective over a wide range of wavelengths, can exert their cytotoxic effects in hypoxia, are easily synthesized and produce few if any side effects. To address these shortfalls, three new osmium‐based photosensitizers (TLD1822, TLD1824 and TLD1829) were synthesized and their photophysical and photobiological attributes determined. These photosensitizers are panchromatic (i.e. black absorbers), activatable from 200 to 900 nm and have strong resistance to photobleaching. In vitro studies show photodynamic therapy efficacy with both red and near‐infrared light in normoxic and hypoxic conditions, which translated to good in vivo efficacy of TLD1829 in a subcutaneous murine colon cancer model.  相似文献   

13.
The main aim of this study is to investigate correlations between the impact of an external mechanical force on the molecular framework of fluorophores and the resultant changes in their fluorescence properties. Taking into account previous theoretical studies, we designed a suitable custom‐tailored oligoparaphenylenevinylene derivative (OPV5) with a twisted molecular backbone. Thin foils made of PVC doped with 100 nM OPV were prepared. By applying uniaxial force, the foils were stretched and three major optical effects were observed simultaneously. First, the fluorescence anisotropy increased, which indicates a reorientation of the fluorophores within the matrix. Second, the fluorescence lifetime decreased by approximately 2.5 % (25 ps). Finally, we observed an increase in the emission energy of about 0.2 % (corresponding to a blue‐shift of 1.2 nm). In addition, analogous measurements with Rhodamine 123 as an inert reference dye showed only minor effects, which can be attributed to matrix effects due to refractive index changes. To relate the observed spectroscopic changes to the underlying changes in molecular properties, quantum‐chemical calculations were also performed. Semiempirical methods had to be used because of the size of the OPV5 chromophore. Two conformers of OPV5 (C2 and Ci symmetry) were considered and both gave very similar results. Both the observed blue‐shift of fluorescence and the reduced lifetime of OPV5 under tensile stress are consistent with the results of the semiempirical calculations. Our study proves the feasibility of fluorescence‐based local force probes for polymers under tension. Improved optical sensors of this type should in principle be able to monitor local mechanical stress in transparent samples down to the single‐molecule level, which harbors promising applications in polymer science and nanotechnology.  相似文献   

14.
Previous studies have shown that natural killer (NK) cell activity was suppressed in volunteer subjects exposed to ultraviolet radiation (UVR) from solarium lamps. The present studies were carried out to determine that spectrum of UVR responsible for suppression of NK activity and to develop in vitro methods to analyze the effectivenes of sunscreen agents in prevention of UVR-mediated suppression of NK activity and other aspects of immune function. UVR from a xenon are lamp source was used to irradiate peripheral blood lymphocytes (PBL) in wells of tissue culture flasks, and transmission interference filters were used to eliminate UVR of particular wavelengths. The results indicated that UVR from this source inhibited NK activity of PBL in a dose-dependent manner with a 50% inhibitory dose of 5.5 mJ/cm2 when unfiltered and 29.6 mJ/cm2 when diluted through cellulose acetate, which gave a UV spectrum similar to that in solar radiation. Equivalent suppression of NK activity was mediated by UV-A (UVR > 315 nm) at dose levels of 4.2 J/cm2, which was approximately 140 times greater than the amount of UV-B (UVR > 315 nm) needed to suppress NK activity. Similar dose-response curves were seen for inhibition of mitogenic responses to phytohemagglutinin except that the latter appeared less sensitive than NK to inhibition by UV-A. These studies suggest that whe the greater proportion of UV-A in solar radiation adn its greater penetration into skin is taken into account, UV-A may have equivalent or greater direct immunosuppressive effects than UV-B. The mechanisms of their immunosuppressive effects may, however, differ. The in vitro system described here would appear to provide a simple test system for further analysis of UVR-indued imunosuppression.  相似文献   

15.
杉叶蕨藻是全球具有较强破坏力的入侵海藻.不同于顶空固相微萃取-GC/MS测试方法,研究采用吹扫/捕集-GC/MS,根据标准化合物图库直接对杉叶蕨藻的挥发性有机物(VOCs)成分进行定性和半定量分析,共分离鉴定出65种VOCs,主要是酚类、呋喃类、醛类、醇类、酮类等化合物.其中酚类、呋喃类等具有一定毒性的化合物百分比含量较高,可能对其它海藻的生长具有抑制作用.对大气环境具有重要影响的卤代烃、苯系物以及含硫有机化合物在杉叶蕨藻挥发性组分中也有大量检出.  相似文献   

16.
The fungal genus Psilocybe and other genera comprise numerous mushroom species that biosynthesize psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine). It represents the prodrug to its dephosphorylated psychotropic analogue, psilocin. The colloquial term “magic mushrooms” for these fungi alludes to their hallucinogenic effects and to their use as recreational drugs. However, clinical trials have recognized psilocybin as a valuable candidate to be developed into a medication against depression and anxiety. We here highlight its recently elucidated biosynthesis, the concurrently developed concept of enzymatic in vitro and heterologous in vivo production, along with previous synthetic routes. The prospect of psilocybin as a promising therapeutic may entail an increased demand, which can be met by biotechnological production. Therefore, we also briefly touch on psilocybin's therapeutic relevance and pharmacology.  相似文献   

17.
Echinacoside (ECH) and acteoside (ACT), as the most and major active components of Cistanche tubulosa, were reported to possess cardioactive, neuroprotective and hepatocyte protective effects, as well as antibacterial, antioxidative effects. Recently, more studies have focused on their pharmacological activities. However, their metabolic profiles in vivo have not been sufficiently investigated. This study proposes an approach for rapidly identifying the complicated and unpredictable metabolites of ECH and ACT in rat plasma, bile, urine and feces, and systematically and comprehensively revealing their major metabolic pathways, based on powerful ultra‐high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry. Plasma, bile, urine and feces were collected from rats after a single 200 mg/kg oral dose. A total of 49 metabolites were detected in rat biological samples. Through analyzing metabolites in bile samples, it was found that ECH and ACT were subjected to a marked hepatic first‐pass effect in liver. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
We synthesised an uncharged amphiphilic porphyrin, meso-tetrakis-(3,5-di-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-phenyl)-porphyrin, and investigated the supramolecular self-assembly of the porphyrins and the incorporation of C60 molecules into the assembly in aqueous solutions. Spectroscopic and dynamic light scattering studies on the assembly of the amphiphilic porphyrin support that the amphiphilic porphyrins are likely held together through enhanced ππ interactions by pronounced hydrophobic effects in aqueous solutions. It was also found that C60 molecules are efficiently incorporated into the assembly. The fluorescence emitted from the porphyrin ring of the porphyrin/C60 co-assembly in aqueous solution is largely quenched, implying the presence of strong electronic interactions between C60 and porphyrin molecules in the supramolecular assembly.  相似文献   

19.
Effets of pπpπ conjugation in phosphaalkenes have been considered by taking into account the results of X-ray structural studies and ab initio quantum-chemical calculations. The structural consequences of the conjugation depend to a certain extent on the character of the substituent and the place of its attachment to the double PC bond. Depending on the location of the substituent, bond polarization may strengthen or weaken (compensate for) the conjugation effects. A high contribution of the s-character of the lone electron pair of the P atom is an essential feature of the electron structure of a phosphaalkene.  相似文献   

20.
Polymers comprised of redox-active organic radicals have emerged as promising materials for use in a variety of organic electronics, including fast-charging batteries. Despite these advances, relatively little attention has been focused on the diversification of the families of radicals that are commonly incorporated into polymer frameworks, with most radical polymers being comprised of nitroxide radicals. Here, we report two new examples prepared via ring-opening methathesis polymerization containing 6-oxoverdazyl and nitronyl nitroxide radicals appended to their backbones. The polymerization reaction and optoelectronic properties were explored in detail, revealing high radical content and redox activity that may be advantageous for their use as semiconducting thin films. Initial studies revealed that current–voltage curves obtained from thin films of the title polymers exhibited memory effects making them excellent candidates for use in resistive memory applications. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 309–319  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号