首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
For 1 ≤ dk, let Kk/d be the graph with vertices 0, 1, …, k ? 1, in which ij if d ≤ |i ? j| ≤ k ? d. The circular chromatic number χc(G) of a graph G is the minimum of those k/d for which G admits a homomorphism to Kk/d. The circular clique number ωc(G) of G is the maximum of those k/d for which Kk/d admits a homomorphism to G. A graph G is circular perfect if for every induced subgraph H of G, we have χc(H) = ωc(H). In this paper, we prove that if G is circular perfect then for every vertex x of G, NG[x] is a perfect graph. Conversely, we prove that if for every vertex x of G, NG[x] is a perfect graph and G ? N[x] is a bipartite graph with no induced P5 (the path with five vertices), then G is a circular perfect graph. In a companion paper, we apply the main result of this paper to prove an analog of Haj?os theorem for circular chromatic number for k/d ≥ 3. Namely, we shall design a few graph operations and prove that for any k/d ≥ 3, starting from the graph Kk/d, one can construct all graphs of circular chromatic number at least k/d by repeatedly applying these graph operations. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 186–209, 2005  相似文献   

2.
We say that a simple graph G is induced matching extendable, shortly IM-extendable, if every induced matching of G is included in a perfect matching of G. The main results of this paper are as follows: (1) For every connected IM-extendable graph G with |V(G)| ≥ 4, the girth g(G) ≤ 4. (2) If G is a connected IM-extendable graph, then |E(G)| ≥ ${3\over 2}|V(G)| - 2$; the equality holds if and only if GT × K2, where T is a tree. (3) The only 3-regular connected IM-extendable graphs are Cn × K2, for n ≥ 3, and C2n(1, n), for n ≥ 2, where C2n(1, n) is the graph with 2n vertices x0, x1, …, x2n−1, such that xixj is an edge of C2n(1, n) if either |ij| ≡ 1 (mod 2n) or |ij| ≡ n (mod 2n). © 1998 John Wiley & Sons, Inc. J. Graph Theory 28: 203–213, 1998  相似文献   

3.
Let G be a finite graph on the vertex set [d] = {1,…, d} with the edges e 1,…, e n and K[t] = K[t 1,…, t d ] the polynomial ring in d variables over a field K. The edge ring of G is the semigroup ring K[G] which is generated by those monomials t e  = t i t j such that e = {i, j} is an edge of G. Let K[x] = K[x 1,…, x n ] be the polynomial ring in n variables over K, and define the surjective homomorphism π: K[x] → K[G] by setting π(x i ) = t e i for i = 1,…, n. The toric ideal I G of G is the kernel of π. It will be proved that, given integers f and d with 6 ≤ f ≤ d, there exists a finite connected nonbipartite graph G on [d] together with a reverse lexicographic order <rev on K[x] and a lexicographic order <lex on K[x] such that (i) K[G] is normal with Krull-dim K[G] = d, (ii) depth K[x]/in<rev (I G ) = f and K[x]/in<lex (I G ) is Cohen–Macaulay, where in<rev (I G ) (resp., in<lex (I G )) is the initial ideal of I G with respect to <rev (resp., <lex) and where depth K[x]/in<rev (I G ) is the depth of K[x]/in<rev (I G ).  相似文献   

4.
We propose a conjecture: for each integer k ≥ 2, there exists N(k) such that if G is a graph of order nN(k) and d(x) + d(y) ≥ n + 2k - 2 for each pair of non-adjacent vertices x and y of G, then for any k independent edges e1, …, ek of G, there exist k vertex-disjoint cycles C1, …, Ck in G such that eiE(Ci) for all i ∈ {1, …, k} and V(C1 ∪ ···∪ Ck) = V(G). If this conjecture is true, the condition on the degrees of G is sharp. We prove this conjecture for the case k = 2 in the paper. © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 105–109, 1997  相似文献   

5.
 For an ordered k-decomposition ? = {G 1, G 2,…,G k } of a connected graph G and an edge e of G, the ?-representation of e is the k-tuple r(e|?) = (d(e, G 1), d(e, G 2),…,d(e, G k )), where d(e, G i ) is the distance from e to G i . A decomposition ? is resolving if every two distinct edges of G have distinct representations. The minimum k for which G has a resolving k-decomposition is its decomposition dimension dec(G). It is shown that for every two positive integers k and n≥ 2, there exists a tree T of order n with dec(T) = k. It is also shown that dec(G) ≤n for every graph G of order n≥ 3 and that dec(K n ) ≤⌊(2n + 5)/3⌋ for n≥ 3. Received: June 17, 1998 Final version received: August 10, 1999  相似文献   

6.
7.
A graph G is a k-sphere graph if there are k-dimensional real vectors v 1,…,v n such that ijE(G) if and only if the distance between v i and v j is at most 1. A graph G is a k-dot product graph if there are k-dimensional real vectors v 1,…,v n such that ijE(G) if and only if the dot product of v i and v j is at least 1.  相似文献   

8.
Let k,n be integers with 2≤kn, and let G be a graph of order n. We prove that if max{dG(x),dG(y)}≥(nk+1)/2 for any x,yV(G) with xy and xyE(G), then G has k vertex-disjoint subgraphs H1,…,Hk such that V(H1)∪?∪V(Hk)=V(G) and Hi is a cycle or K1 or K2 for each 1≤ik, unless k=2 and G=C5, or k=3 and G=K1C5.  相似文献   

9.
The generalized Petersen graph GP (n, k), n ≤ 3, 1 ≥ k < n/2 is a cubic graph with vertex-set {uj; i ? Zn} ∪ {vj; i ? Zn}, and edge-set {uiui, uivi, vivi+k, i?Zn}. In the paper we prove that (i) GP(n, k) is a Cayley graph if and only if k2 ? 1 (mod n); and (ii) GP(n, k) is a vertex-transitive graph that is not a Cayley graph if and only if k2 ? -1 (mod n) or (n, k) = (10, 2), the exceptional graph being isomorphic to the 1-skeleton of the dodecahedon. The proof of (i) is based on the classification of orientable regular embeddings of the n-dipole, the graph consisting of two vertices and n parallel edges, while (ii) follows immediately from (i) and a result of R. Frucht, J.E. Graver, and M.E. Watkins [“The Groups of the Generalized Petersen Graphs,” Proceedings of the Cambridge Philosophical Society, Vol. 70 (1971), pp. 211-218]. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
An integer sequence π is said to be graphic if it is the degree sequence of some simple graph G. In this case we say that G is a realization of π. Given a graph H, and a graphic sequence π we say that π is potentially H-graphic if there is some realization of π that contains H as a subgraph. We define σ(H,n) to be the minimum even integer such that every graphic sequence with sum at least σ(H,n) is potentially H-graphic. In this paper, we determine σ(H,n) for the graph H = Km1Km2∪...∪ Kmk when n is a sufficiently large integer. This is accomplished by determining σ(Kj + kK2,n) where j and k are arbitrary positive integers, and considering the case where j = m − 2k and m = ∑ mi.  相似文献   

11.
For fixed k ≥ 3, let Ek(x) denote the error term of the sum ?nxrk(n)\sum_{n\le x}\rho_k(n) , where rk(n) = ?n=|m|k+|l|k, g.c.d.(m,l)=1\rho_k(n) = \sum_{n=|m|^k+|l|^k, g.c.d.(m,l)=1} 1. It is proved that if the Riemann hypothesis is true, then E3(x) << x331/1254+eE_3(x)\ll x^{331/1254+\varepsilon} , E4(x) << x37/184+eE_4(x)\ll x^{37/184+\varepsilon} . A short interval result is also obtained.  相似文献   

12.
Simple graphs are considered. Let G be a graph andg(x) andf(x) integer-valued functions defined on V(G) withg(x)⩽f(x) for everyxɛV(G). For a subgraphH ofG and a factorizationF=|F 1,F 2,⃛,F 1| ofG, if |E(H)∩E(F 1)|=1,1⩽ij, then we say thatF orthogonal toH. It is proved that for an (mg(x)+k,mf(x) -k)-graphG, there exists a subgraphR ofG such that for any subgraphH ofG with |E(H)|=k,R has a (g,f)-factorization orthogonal toH, where 1⩽k<m andg(x)⩾1 orf(x)⩾5 for everyxɛV(G). Project supported by the Chitia Postdoctoral Science Foundation and Chuang Xin Foundation of the Chinese Academy of Sciences.  相似文献   

13.
For positive integers n1, n2, …, nI and graphs GI+1, GI+2, …, Gk, 1 ≤ / < k, the mixed Ramsey number χ(n1, …, n1, GI+1, …, Gk) is define as the least positive integer p such that for each factorization Kp = F1⊕ … ⊕ F FI+1⊕ … ⊕ Fk, it it follows that χ(Fi) ≥ ni for some i, 1 ? i ? l, or Gi is a subgraph of Fi for some i, l < i ? k. Formulas are presented for maxed Ramsey numbers in which the graphs GI+1, GI+2, …, Gk are connected, and in which k = I+1 and GI+1 is arbitray.  相似文献   

14.
 In this paper we study three-color Ramsey numbers. Let K i,j denote a complete i by j bipartite graph. We shall show that (i) for any connected graphs G 1, G 2 and G 3, if r(G 1, G 2)≥s(G 3), then r(G 1, G 2, G 3)≥(r(G 1, G 2)−1)(χ(G 3)−1)+s(G 3), where s(G 3) is the chromatic surplus of G 3; (ii) (k+m−2)(n−1)+1≤r(K 1,k , K 1,m , K n )≤ (k+m−1)(n−1)+1, and if k or m is odd, the second inequality becomes an equality; (iii) for any fixed mk≥2, there is a constant c such that r(K k,m , K k,m , K n )≤c(n/logn), and r(C 2m , C 2m , K n )≤c(n/logn) m/(m−1) for sufficiently large n. Received: July 25, 2000 Final version received: July 30, 2002 RID="*" ID="*" Partially supported by RGC, Hong Kong; FRG, Hong Kong Baptist University; and by NSFC, the scientific foundations of education ministry of China, and the foundations of Jiangsu Province Acknowledgments. The authors are grateful to the referee for his valuable comments. AMS 2000 MSC: 05C55  相似文献   

15.
For a graph G whose number of edges is divisible by k, let R(G,Zk) denote the minimum integer r such that for every function f: E(Kr) ? Zk there is a copy G1 of G in Kr so that Σe∈E(G1) f(e) = 0 (in Zk). We prove that for every integer k1 R(Kn, Zk)n + O(k3 log k) provided n is sufficiently large as a function of k and k divides (). If, in addition, k is an odd prime-power then R(Kn, Zk)n + 2k - 2 and this is tight if k is a prime that divides n. A related result is obtained for hypergraphs. It is further shown that for every graph G on n vertices with an even number of edges R(G,Z2)n + 2. This estimate is sharp. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
For a positive integer d, the usual d‐dimensional cube Qd is defined to be the graph (K2)d, the Cartesian product of d copies of K2. We define the generalized cube Q(Kk, d) to be the graph (Kk)d for positive integers d and k. We investigate the decomposition of the complete multipartite graph K into factors that are vertex‐disjoint unions of generalized cubes Q(Kk, di), where k is a power of a prime, n and j are positive integers with jn, and the di may be different in different factors. We also use these results to partially settle a problem of Kotzig on Qd‐factorizations of Kn. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 144–150, 2000  相似文献   

17.
A graph G has the Median Cycle Property (MCP) if every triple (u0,u1,u2) of vertices of G admits a unique median or a unique median cycle, that is a gated cycle C of G such that for all i,j,k∈{0,1,2}, if xi is the gate of ui in C, then: {xi,xj}⊆IG(ui,uj) if ij, and dG(xi,xj)<dG(xi,xk)+dG(xk,xj). We prove that a netlike partial cube has the MCP if and only if it contains no triple of convex cycles pairwise having an edge in common and intersecting in a single vertex. Moreover a finite netlike partial cube G has the MCP if and only if G can be obtained from a set of even cycles and hypercubes by successive gated amalgamations, and equivalently, if and only if G can be obtained from K1 by a sequence of special expansions. We also show that the geodesic interval space of a netlike partial cube having the MCP is a Pash-Peano space (i.e. a closed join space).  相似文献   

18.
A decomposition ??={G1, G2,…,Gs} of a graph G is a partition of the edge set of G into edge‐disjoint subgraphs G1, G2,…,Gs. If Gi?H for all i∈{1, 2, …, s}, then ?? is a decomposition of G by H. Two decompositions ??={G1, G2, …, Gn} and ?={F1, F2,…,Fn} of the complete bipartite graph Kn,n are orthogonal if |E(Gi)∩E(Fj)|=1 for all i,j∈{1, 2, …, n}. A set of decompositions {??1, ??2, …, ??k} of Kn, n is a set of k mutually orthogonal graph squares (MOGS) if ??i and ??j are orthogonal for all i, j∈{1, 2, …, k} and ij. For any bipartite graph G with n edges, N(n, G) denotes the maximum number k in a largest possible set {??1, ??2, …, ??k} of MOGS of Kn, n by G. El‐Shanawany conjectured that if p is a prime number, then N(p, Pp+ 1)=p, where Pp+ 1 is the path on p+ 1 vertices. In this article, we prove this conjecture. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 369–373, 2009  相似文献   

19.
Let D(G)=(di,j)n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vi and vj in G. The largest eigenvalue of D(G) is called the distance spectral radius of graph G, denoted by ?(G). In this paper, some graft transformations that decrease or increase ?(G) are given. With them, for the graphs with both order n and k pendant vertices, the extremal graphs with the minimum distance spectral radius are completely characterized; the extremal graph with the maximum distance spectral radius is shown to be a dumbbell graph (obtained by attaching some pendant edges to each pendant vertex of a path respectively) when 2≤kn−2; for k=1,2,3,n−1, the extremal graphs with the maximum distance spectral radius are completely characterized.  相似文献   

20.
In this paper, we obtain the following result: Let k, n 1 and n 2 be three positive integers, and let G = (V 1,V 2;E) be a bipartite graph with |V1| = n 1 and |V 2| = n 2 such that n 1 ⩾ 2k + 1, n 2 ⩾ 2k + 1 and |n 1n 2| ⩽ 1. If d(x) + d(y) ⩾ 2k + 2 for every xV 1 and yV 2 with xy $ \notin $ \notin E(G), then G contains k independent cycles. This result is a response to Enomoto’s problems on independent cycles in a bipartite graph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号