首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elusive phosphinidene-chlorotetrylenes, [PGeCl] and [PSiCl] have been stabilized by the hetero-bileptic cyclic alkyl(amino) carbene (cAAC), N-heterocyclic carbene (NHC) ligands, and isolated in the solid state at room temperature as the first neutral monomeric species of this class with the general formulae (L)P-ECl(L′) (E=Ge, 3 a – 3 c ; E=Si, 6 ; L=cAAC; L′=NHC). Compounds 3 a – 3 c have been synthesized by the reaction of cAAC-supported potassium phosphinidenides [cAAC=PK(THF)x]n ( 1 a – 1 c ) with the adduct NHC:→GeCl2 ( 2 ). Similarly, compound 6 has been synthesized via reaction of 1 a with NHC:→SiCl2 adduct ( 4 ). Compounds 3 a – 3 c , and 6 have been structurally characterized by single-crystal X-ray diffraction, NMR spectroscopy and mass spectrometric analysis. DFT calculations revealed that the heteroatom P in 3 bears two lone pairs; the non-bonding pair with 67.8 % of s- and 32 % of p character, whereas the other lone pair is involved in π backdonation to the CcAAC-N π* of cAAC. The Ge atom in 3 contains a lone pair with 80 % of s character, and slightly involved in the π backdonation to CNHC. EDA-NOCV analyses showed that two charged doublet fragments {(cAAC)(NHC)}+, and {PGeCl} prefer to form one covalent electron-sharing σ bond, one dative σ bond, one dative π bond, and a charge polarized weak π bond. The covalent electron-sharing σ bond contributes to the major stabilization energy to the total orbital interaction energy of 3 , enabling the first successful isolations of this class of compounds ( 3 , 6 ) in the laboratory.  相似文献   

2.
The electronic structure of iron‐oxo porphyrin π‐cation radical complex Por·+FeIV?O (S? H) has been studied for doublet and quartet electronic states by means of two methods of the quantum chemical topology analysis: electron localization function (ELF) η(r) and electron density ρ(r). The formation of this complex leads to essential perturbation of the topological structure of the carbon–carbon bonds in porphyrin moiety. The double C?C bonds in the pyrrole anion subunits, represented by pair of bonding disynaptic basins Vi=1,2(C,C) in isolated porphyrin, are replaced by single attractor V(C,C)i=1–20 after complexation with the Fe cation. The iron–nitrogen bonds are covalent dative bonds, N→Fe, described by the disynaptic bonding basins V(Fe,N)i=1–4, where electron density is almost formed by the lone pairs of the N atoms. The nature of the iron–oxygen bond predicted by the ELF topological analysis, shows a main contribution of the electrostatic interaction, Feδ+···Oδ?, as long as no attractors between the C(Fe) and C(O) core basins were found, although there are common surfaces between the iron and oxygen basines and coupling between iron and oxygen lone pairs, that could be interpreted as a charge‐shift bond. The Fe? S bond, characterized by the disynaptic bonding basin V(Fe,S), is partially a dative bond with the lone pair donated from sulfur atom. The change of electronic state from the doublet (M = 2) to quartet (M = 4) leads to reorganization of spin polarization, which is observed only for the porphyrin skeleton (?0.43e to 0.50e) and S? H bond (?0.55e to 0.52e). © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The crystal structures of two silatranone derivatives are reported. The close N → Si approach (2.106(3) Å in m-trifluoromethylphenyl-, and 2.129(3) Å in p-fluorophenyl-silatranone) indicates strong dative acceptor bonds. For various silatrane derivatives and inverse relation has been revealed between the mean group electronegativity of the substituent R attached to silicon and the N → Si dative bond distance. In both structures there are long (1.72 Å) SiO bonds in the SiOCO moiety. The m-trifluoromethylphenyl derivative contains a disordered CF3 group.  相似文献   

4.
Number of bonds formed by sharing an electron pair between two atoms is not restricted to one, it can go beyond four and six is the maximum. While homopolar sextuple bond in Mo2 and W2 has been reported, such a high bond order in heteropolar diatomics has remained elusive. In the pursuit of the sextuple bond in polar diatomics, the present study depicts the existence of such multiple bonds in Rhodium-Scandium hetero-diatom based on relativistic quantum chemical calculations. The bonding comprises of three normal electron sharing covalent bonds and three dative covalent bonds.  相似文献   

5.
We report the preparation of UFe(CO)3 and OUFe(CO)3 complexes using a laser-vaporization supersonic ion source in the gas phase. These compounds were mass-selected and characterized by infrared photodissociation spectroscopy and state-of-the-art quantum chemical studies. There are unprecedented triple bonds between U 6d/5f and Fe 3d orbitals, featuring one covalent σ bond and two Fe-to-U dative π bonds in both complexes. The uranium and iron elements are found to exist in unique formal U(I or III) and Fe(−II) oxidation states, respectively. These findings suggest that there may exist a whole family of stable df–d multiple-bonded f-element-transition-metal compounds that have not been fully recognized to date.  相似文献   

6.
7.
The dative‐bond representation (L→E) in compounds with main group elements (E) has triggered extensive debate in the recent past. The scope and limits of this nonclassical coordination bond warrant comprehensive exploration. Particularly compounds with (L→N←L′)+ arrangement are of special interest because of their therapeutic importance. This work reports the design and synthesis of novel chemical species with the general structural formula (L→N←L′)+ carrying the unusual ligand cyclohexa‐2,5‐diene‐4‐(diaminomethynyl)‐1‐ylidene. Four species belonging to the (L→N←L′)+ class carrying this unconventional ligand were synthesized. Quantum chemical and X‐ray diffraction analyses showed that the electronic and geometric parameters are consistent with those of already reported divalent NI compounds. The molecular orbital analysis, geometric parameters, and spectral data clearly support the L→N and N←L′ interactions in these species. The newly identified ligand has the properties of a reactive carbene and high nucleophilicity.  相似文献   

8.
Metal-only Lewis pairs (MOLPs) in which the two metal fragments are solely connected by a dative M→M bond represent privileged architectures to acquire fundamental understanding of bimetallic bonding. This has important implications in many catalytic processes or supramolecular systems that rely on synergistic effects between two metals. However, a systematic experimental/computational approach on a well-defined class of compounds is lacking. Here we report a family of MOLPs constructed around the RhI precursor [(η5-C5Me5)Rh(PMe3)2] ( 1 ) with a series of s, p and d-block metals, mostly from the main group elements, and investigate their bonding by computational means. Among the new MOLPs, we have structurally characterized those formed by dative bonding between 1 and MgMeBr, AlMe3, GeCl2, SnCl2, ZnMe2 and Zn(C6F5)2, as well as spectroscopically identified the ones resulting from coordination to MBArF (M=Na, Li; BArF=[B(C6H2-3,5-(CF3)2)4]) and CuCl. Some of these compounds represent unique examples of bimetallic structures, such as the first unambiguous cases of Rh→Mg dative bonding or base-free rhodium bound germylene and stannylene species. Multinuclear NMR spectroscopy, including 103Rh NMR, is used to probe the formation of Rh→M bonds. A comprehensive theoretical analysis of those provides clear trends. As anticipated, greater bond covalency is found for the more electronegative acids, whereas ionic character dominates for the least electronegative nuclei, though some degree of electron sharing is identified in all cases.  相似文献   

9.
Quantum chemical calculations at the MP2/aug‐cc‐pVTZ and CCSD(T)/aug‐cc‐pVTZ levels have been carried out for the title compounds. The electronic structures were analyzed with a variety of charge and energy partitioning methods. All molecules possess linear equilibrium structures with D∞h symmetry. The total bond dissociation energies (BDEs) of the strongly bonded halogen anions [XHX]? and [XAuX]? decrease from [FHF]? to [IHI]? and from [FAuF]? to [IAuI]?. The BDEs of the noble gas compounds [NgHNg]+ and [NgAuNg]+ become larger for the heavier atoms. The central hydrogen and gold atoms carry partial positive charges in the cations and even in the anions, except for [IAuI]?, in which case the gold atom has a small negative charge of ?0.03 e. The molecular electrostatic potentials reveal that the regions of the most positive or negative charges may not agree with the partial charges of the atoms, because the spatial distribution of the electronic charge needs to be considered. The bonding analysis with the QTAIM method suggests a significant covalent character for the hydrogen bonds to the noble gas atoms in [NgHNg]+ and to the halogen atoms in [XHX]?. The covalent character of the bonding in the gold systems [NgAuNg]+ and [XAuX]? is smaller than in the hydrogen compound. The energy decomposition analysis suggests that the lighter hydrogen systems possess dative bonds X?→H+←X? or Ng→H+←Ng while the heavier homologues exhibit electron sharing through two‐electron, three‐center bonds. Dative bonds X?→Au+←X? and Ng→Au+←Ng are also diagnosed for the lighter gold systems, but the heavier compounds possess electron‐shared bonds.  相似文献   

10.
DFT (B3LYP, M06‐2X) and MP2 methods are applied to the design of a wide series of the potentially 10‐C‐5 neutral compounds based on 6‐azabicyclotetradecanes: XC1(YCH2CH2CH2)3N 1 – 3 , XC1(YC6H4CH2)3N 4 – 6 , XC1[Y(tBuC6H3)CH2]3N 7 – 9 and carbatranophanes 10 – 25 (X=Me, F, Cl; Y=O, NH, CH2, SiH2; Z=O, CH2, (CH2)2, (CH2)3). Carbatranophanes 10 – 25 are characterized by a sterical compression of their axial 3c–4e XC1←N fragment with respect to that in the parent molecules 4 – 6 . A magnitude of the revealed effect depends on a valence surrounding of the central carbon atom C1, the size and the nature of the side chains (Z) that link the “π‐electron cap” with a tetradecane backbone. This circumstance allowed us to obtain 10‐C‐5 structures with the configuration of the bonds around the C1 atom, which corresponds to practically an ideal trigonal bipyramid. In these compounds, the values of the covalence ratio χ of approximately 0.6 for the coordination C1←N contacts with a covalent contribution (atoms in molecules (AIM) and natural bond orbital (NBO)) are record in magnitude. These values lie close to a low limit of the interval of the χSi←D change (0.6–0.9) being characteristic of the dative and ionic‐covalent (by nature) Si←D bond (D=N, O) in the known 10‐Si‐5 silicon compounds.  相似文献   

11.
We challenge the interpretation of the chemical bond in NaBH3? proposed by Liu et al. We argue that NaBH3? has an electron‐sharing Na?BH3? covalent bond rather than a dative bond Na?→BH3.  相似文献   

12.
A newly introduced Na−B bond in NaBH3 has been a challenge for the chemical bonding community. Here, a series of MBH3 (M=Li, Na, K) species and NaB(CN)3 are studied within the context of quantum chemical topology approaches. The analyses suggest that M–B interaction cannot be classified as an ordinary covalent, dative, or even simple ionic interaction. The interactions are controlled by coulombic forces between the metals and the substituents on boron, for example, H or CN, more than the direct M–B interaction. On the other hand, while the characteristics of the (3, −1) critical points of the bonds are comparable to weak hydrogen bonds, not covalent bonds, the metal and boron share a substantial sum of electrons. To the best of the author's knowledge, the characteristics of these bonds are unprecedented among known molecules. Considering all paradoxical properties of these bonds, they are herein described as ionic-enforced covalent bonds.  相似文献   

13.
We report the preparation of UFe(CO)3 and OUFe(CO)3 complexes using a laser‐vaporization supersonic ion source in the gas phase. These compounds were mass‐selected and characterized by infrared photodissociation spectroscopy and state‐of‐the‐art quantum chemical studies. There are unprecedented triple bonds between U 6d/5f and Fe 3d orbitals, featuring one covalent σ bond and two Fe‐to‐U dative π bonds in both complexes. The uranium and iron elements are found to exist in unique formal U(I or III) and Fe(−II) oxidation states, respectively. These findings suggest that there may exist a whole family of stable df–d multiple‐bonded f‐element‐transition‐metal compounds that have not been fully recognized to date.  相似文献   

14.
Ab initio and density functional theory‐based calculations are performed to study the structure, stability, and nature of bonding of superhalogen‐supported noble gas (Ng) compounds of the type HNgY where (Ng = Ar‐Rn; Y = BeF3). Here, BeF3 acts as the superhalogen. Calculations show that the HNgBeF3 spontaneously dissociates into product following the dissociation channels: HNgBeF3 → HBeF3 + Ng and HNgBeF3 → Ng + HF + BeF2. The transition states are optimized and the energy barriers are computed to show the metastable behavior of HNgBeF3. HNgBeF3 molecules are kinetically stable with respect to the first dissociation process having energy barriers of 1.0, 5.0, 10.6, and 13.9 kcal/mol for Ar, Kr, Xe, and Rn analogues, respectively, at CCSD(T)/Aug‐cc‐pVTZ level. These calculations suggest that the HXeBeF3 and HRnBeF3 can be shown to be stable up to ∼100 K temperature with a half‐life of ∼102 seconds. The nature of H Ng and two different types of Ng F bonds in HNgBeF3 molecules is explored through the natural bond orbital and electron density analyses. The large Wiberg bond index (WBI) values for the H Ng bond indicate the formation of almost a single bond in between H‐atoms and Ng‐atoms, whereas small WBI values for the two Ng F bonds indicate a noncovalent interaction in between them. The electron density analysis further supports the covalency of the H Ng bond and noncovalent interaction in the two Ng F bonds in HNgBeF3.  相似文献   

15.
The possibility of electron binding to five molecules (i.e., F3N → BH3, H2FN → BH3, HF2N → BH3, H3N → BH2F, H3N → BHF2) was studied at the coupled cluster level of theory with single, double, and noniterative triple excitations and compared to earlier results for H3N → BH3 and H3N → BF3. All these neutral complexes involve dative bonds that are responsible for significant polarization of these species that generates large dipole moments. As a consequence, all of the neutral systems studied, except F3N → BH3, support electronically stable dipole‐bound anionic states whose calculated vertical electron detachment energies are 648 cm?1 ([H2FN → BH3]?), 234 cm?1 ([HF2N → BH3]?), 1207 cm?1 ([H3N → BH2F]?), and 1484 cm?1 ([H3N → BHF2]?). In addition, we present numerical results for a model designed to mimic charge–transfer (CT) and show that the electron binding energy correlates with the magnitude of the charge flow in the CT complex. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

16.
The scandium oxydifluoride free radical, OScF2, is produced by the spontaneous, specific reaction of laser ablated Sc atoms with OF2 in solid argon and characterized by using matrix infrared spectroscopy and theoretical calculations. The OScF2 molecule is predicted to have C2v symmetry and a 2B2 ground state with an unpaired electron located primarily on the terminal oxygen atom, which makes it a scandium difluoride molecule coordinated by a neutral oxygen atom radical in forming the Sc? O single bond. The closed shell singlet OScF molecule with an obtuse bent geometry has a much shorter Sc? O bond of 1.682 Å than that of the OScF2 radical (1.938 Å) on the basis of B3LYP calculations. The Sc? O bond in OScF consists of two covalent bonds and a dative bond in which the oxygen 2pπ lone pair donates electron density into an empty Sc 3d orbital thus forming a triple oxo bond. Density functional calculations suggest it is highly exothermic for fluorine transfer from OF2 to scandium, which favors the formation of the OScF2 radical species as well as the OScF molecule after fluorine loss.  相似文献   

17.
Molecular interactions between uracil and nitrous acid (U–NA) [C4N2O2H4? NO2H] have been studied using B3LYP, B3PW91, and MP2 methods with different basis sets. The optimized geometries, harmonic vibrational frequencies, charge transfer, topological properties of electron density, nucleus‐independent chemical shift (NICS), and nuclear magnetic resonance one‐ and two‐bonds spin–spin coupling constants were calculated for U–NA complexes. In interaction between U and NA, eight cyclic complexes were obtained with two intermolecular hydrogen bonds N(C)HU…N(O) and OHNA…OU. In these complexes, uracil (U) simultaneously acts as proton acceptor and proton donor. The most stable complexes labeled, UNA1 and UNA2, are formed via NH bond of U with highest acidity and CO group of U with lowest proton affinity. There is a relationship between hydrogen bond distances and the corresponding frequency shifts. The solvent effect on complexes stability was examined using B3LYP method with the aug‐cc‐pVDZ basis set by applying the polarizable continuum model (PCM). The binding energies in the gas phase have also been compared with solvation energies computed using the PCM. Natural bond orbital analysis shows that in all complexes, the charge transfer takes place from U to NA. The results predict that the Lone Pair (LP)(O)U → σ*(O? H) and LP(N(O)NA → σ*(N(C)? H)U donor–acceptor interactions are most important interactions in these complexes. Atom in molecule analysis confirms that hydrogen bond contacts are electrostatic in nature and covalent nature of proton donor groups decreases upon complexation. The relationship between spin–spin coupling constant (1hJHY and 2hJHY) with interaction energy and electronic density at corresponding hydrogen bond critical points and H‐bonds distances are investigated. NICS used for indicating of aromaticity of U ring upon complexation. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
In this work, we investigate the nature of the O–O and O–N interactions in protonated 1,2-dioxirane-3-one derivatives and protonated 1,2-oxaziridine-3-one derivatives, respectively. The quantum theory of atoms in molecules and the natural bond orbital (NBO) method in conjunction with the localized molecular orbital energy decomposition analysis (LMOEDA) have been used. LMOEDA and NBO analyses reveal that the O–O and O–N interactions exhibit characteristics of dative covalent bonds. In addition, the L(r) = ??2 ρ(r) function reveals that the O–O and O–N interactions can be categorized as strong hole–lump interactions.  相似文献   

19.
Formation of a genuine chemical bond between two similarly charged fragments is beyond expectation. Any such interaction generally lies in the realm of non-covalent interaction. Herein, formation of a strong dative covalent bond between two anionic fragments is reported for the first time. Calculation using ab initio coupled cluster theory reveals the formation of an unprecedented strong H3Be←X (X=CH3, CN, OH, F) dative covalent bond. The calculated bond dissociation energies in polar solvents are significant, which indicates the possibility of their experimental realization.  相似文献   

20.
Our attempts to synthesize the N→Si intramolecularly coordinated organosilanes Ph2L1SiH ( 1 a ), PhL1SiH2 ( 2 a ), Ph2L2SiH ( 3 a ), and PhL2SiH2 ( 4 a ) containing a CH?N imine group (in which L1 is the C,N‐chelating ligand {2‐[CH?N(C6H3‐2,6‐iPr2)]C6H4}? and L2 is {2‐[CH?N(tBu)]C6H4}?) yielded 1‐[2,6‐bis(diisopropyl)phenyl]‐2,2‐diphenyl‐1‐aza‐silole ( 1 ), 1‐[2,6‐bis(diisopropyl)phenyl]‐2‐phenyl‐2‐hydrido‐1‐aza‐silole ( 2 ), 1‐tert‐butyl‐2,2‐diphenyl‐1‐aza‐silole ( 3 ), and 1‐tert‐butyl‐2‐phenyl‐2‐hydrido‐1‐aza‐silole ( 4 ), respectively. Isolated organosilicon amides 1 – 4 are an outcome of the spontaneous hydrosilylation of the CH?N imine moiety induced by N→Si intramolecular coordination. Compounds 1–4 were characterized by NMR spectroscopy and X‐ray diffraction analysis. The geometries of organosilanes 1 a – 4 a and their corresponding hydrosilylated products 1 – 4 were optimized and fully characterized at the B3LYP/6‐31++G(d,p) level of theory. The molecular structure determination of 1 – 3 suggested the presence of a Si?N double bond. Natural bond orbital (NBO) analysis, however, shows a very strong donor–acceptor interaction between the lone pair of the nitrogen atom and the formal empty p orbital on the silicon and therefore, the calculations show that the Si?N bond is highly polarized pointing to a predominantly zwitterionic Si+N? bond in 1 – 4 . Since compounds 1 – 4 are hydrosilylated products of 1 a – 4 a , the free energies (ΔG298), enthalpies (ΔH298), and entropies (ΔH298) were computed for the hydrosilylation reaction of 1 a – 4 a with both B3LYP and B3LYP‐D methods. On the basis of the very negative ΔG298 values, the hydrosilylation reaction is highly exergonic and compounds 1 a – 4 a are spontaneously transformed into 1 – 4 in the absence of a catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号