首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction of [( (t) Bu 3SiO) 2MoCl] 2 ( 2 2) provided the cyclometalated derivative, (silox) 2HMoMo(kappa-O,C-OSi (t) Bu 2CMe 2CH 2)(silox) ( 3), and alkylation of 2 2 with MeMgBr afforded [( (t) Bu 3SiO) 2MoCH 3] 2 ( 4 2). The hydrogenation of 4 2 was ineffective, but the reduction of 2 2 under H 2 generated [( (t) Bu 3SiO) 2MoH] 2 ( 5 2), and the addition of 2-butyne to 3 gave [(silox) 2Mo] 2(mu:eta (2)eta (2)-C 2Me 2) ( 6), thereby implicating the existence of [(silox) 2Mo] 2 ( 1 2). The addition of (silox)H to Mo(NMe 2) 4 led to (silox) 2Mo(NMe 2) 2 ( 7), but further elaboration of the core proved ineffective. The silanolysis of MoCl 5 afforded (silox) 2MoCl 4 ( 8) and (silox) 3MoCl 3 ( 9) as a mixture from which pure 8 could be isolated, and the addition of THF or PMe 3 resulted in derivatives of 9 as (silox) 2Cl 3MoL (L = THF, 10; PMe 3, 11). Reductions of 11 and (silox) 2WCl 4 ( 15) in the presence of excess PMe 3 provided (silox) 2Cl 2MPMe 3 (M = Mo, 12; W, 16) or (silox) 2HW(eta (2)-CH 2PMe 2)PMe 3 ( 14). While "(silox) 2W(PMe 3) 2" was unstable with respect to W(IV) as 14, a reduction of 12 led to the stable Mo(II) diphosphine, (silox) 2Mo(PMe 3) 2 ( 17). X-ray crystal structures of 10 (pseudo- O h ), 12 (square pyramidal), and 14 and 17 (distorted T d ) are reported. Calculations address the diamagnetism of 12 and 16, and the distortion of 17 and its stability to cyclometalation in contrast to 14.  相似文献   

2.
3.
4.
The complex RuH(η2-CH2PMe2)(PMe3)3 is obtained by reduction of trans-RuCl2(PMe3)4 with Na/Hg in benzene. In contrast to the iron analogue, this complex is configurationally stable on the NMR time scale and does not react with CO or P(OMe)3 under normal conditions, but it does react with the electrophiles MeI, CS2 and NH4PF6 to form RuI(η2-CH2PMe2)(PMe3)3, Ru(η3-S2CHPMe2CH2)(PMe3)3 and [RuH(PMe3)5]PF6, respectively.  相似文献   

5.
6.
7.
The cross-coupling of aryl chlorides and bis(pinacolato)diboron was achieved using NiCl(2)(PMe(3))(2) catalyst in the presence of metal 2,2,2-trifluoroethoxide. The catalyst smoothly provided the desired products regardless of a variety of functional groups and substituted positions.  相似文献   

8.
Alternative Ligands. XXX Novel Tripod Ligands XM' (OCH2PMe2)n(CH2CH2PMe2)3?n (M' = Si, Ge; n = 0–3) for Cage Structures Attempts to prepare new tripod ligands XSi(OCH2PMe2)3 [X = CF3 ( 15 ), C6F5 ( 16 ), NMe2 ( 17 ), Cl ( 18 ), F ( 19 ), H ( 20 ), OEt ( 21 ), OMe ( 22 )] prove to be unsuccessful in spite of using different pathways, because the groups X undergo following reactions giving insoluble solids (polyadducts) or form inseparable mixtures, e. g. (RO)nSi(OCH2PMe2)4?n (R = Me, Et). In many cases Si(OCH2PMe2)4 ( 13 ) can be isolated from the reaction mixture. The syntheses of the ligands XSi(CH2CH2PMe2)3 [X = NMe2 ( 6 ), Cl ( 7 ), F ( 8 ), OMe ( 9 ), Vi ( 12 )], Si(OCH2PMe2)4 ( 13 ) und Me3GeOCH2PMe2 ( 14 ) are successful. The compounds MeSi(OCH2PMe2)2CH2CH2NMe2 ( 10 ) and MeSi(OCH2PMe2)2CH2CH2P(CF3)2 ( 11 ) with different donor groups are obtained in good yields. The preparative program includes the synthesis of the known representatives MeSi(OCH2PMe3)3 ( 1 ), MeSi(OCH2PMe2)2CH2CH2PMe2 ( 2 ), MeSi(OCH2PMe2)(CH2CH2PMe2)2 ( 3 ), MeSi(CH2CH2PMe2)3 ( 4 ) and MeGe(OCH2PMe2)3 ( 5 ). Important preparative steps are the substitution of M'Cl (M' = Si, Ge) by Me2PCH2O groups and the photochemically induced or base catalyzed addition of HNMe2, HPMe2 or HP(CF3)2 to SiVi functions. The novel compounds are characterized by analytical and spectroscopic (IR, NMR, MS) investigations.  相似文献   

9.
10.
11.
12.
The reaction betweenM 2Cl4(PMe3)4 (M = Mo, W) and four equivalents of LiCCR (R = Me,i-Pr,t-Bu, SiMe3, Ph) in dimethoxyethane solution yields alkynyl-substituted, quadruply bonded complexes of the type M2(CCR )4(PMe3)4 in 10–90% yield. The electronic-absorption and1H-,13 13C-, and31P-NMR spectroscopic data for these dimetallapolyyne complexes indicate that they are uncontaminated by chloride-containing impurities, and that they possess theD 2d geometry expected of compounds of the M2X4L4 type. A single-crystal X-ray diffraction study of Mo2(CCPr i )4(PMe3)4 confirms this latter conclusion, and also reveals that the Mo2 core of the complex is three-way disordered within the ordered quasi-cubic array of ligating atoms.  相似文献   

13.
14.
15.
The equilibrium geometries and bond dissociation energies of 16‐valence‐electron(VE) complexes [(PMe3)2Cl2M(E)] and 18‐VE complexes [(PMe3)2(CO)2M(E)] with M=Fe, Ru, Os and E=C, Si, Ge, Sn were calculated by using density functional theory at the BP86/TZ2P level. The nature of the M? E bond was analyzed with the NBO charge decomposition analysis and the EDA energy‐decomposition analysis. The theoretical results predict that the heavier Group 14 complexes [(PMe3)2Cl2M(E)] and [(PMe3)2(CO)2M(E)] with E=Si, Ge, Sn have C2v equilibrium geometries in which the PMe3 ligands are in the axial positions. The complexes have strong M? E bonds which are slightly stronger in the 16‐VE species 1ME than in the 18‐VE complexes 2ME . The calculated bond dissociation energies show that the M? E bonds become weaker in both series in the order C>Si>Ge>Sn; the bond strength increases in the order Fe<Ru<Os for 1ME , whereas a U‐shaped trend Ru<Os<Fe is found for 2ME . The M? E bonding analysis suggests that the 16‐VE complexes 1ME have two electron‐sharing bonds with σ and π symmetry and one donor–acceptor π bond like the carbon complex. Thus, the bonding situation is intermediate between a typical Fischer complex and a Schrock complex. In contrast, the 18‐VE complexes 2ME have donor–acceptor bonds, as suggested by the Dewar–Chatt–Duncanson model, with one M←E σ donor bond and two M→E π‐acceptor bonds, which are not degenerate. The shape of the frontier orbitals reveals that the HOMO?2 σ MO and the LUMO and LUMO+1 π* MOs of 1ME are very similar to the frontier orbitals of CO.  相似文献   

16.
Density functional calculations at the BP86/TZ2P level were carried out to understand the ligand properties of the 16‐valence‐electron(VE) Group 14 complexes [(PMe3)2Cl2M(E)] ( 1ME ) and the 18‐VE Group 14 complexes [(PMe3)2(CO)2M(E)] ( 2ME ; M=Fe, Ru, Os; E=C, Si, Ge, Sn) in complexation with W(CO)5. Calculations were also carried out for the complexes (CO)5W–EO. The complexes [(PMe3)2Cl2M(E)] and [(PMe3)2(CO)2M(E)] bind strongly to W(CO)5 yielding the adducts 1ME–W(CO)5 and 2ME–W(CO)5 , which have C2v equilibrium geometries. The bond strengths of the heavier Group 14 ligands 1ME (E=Si–Sn) are uniformly larger, by about 6–7 kcal mol?1, than those of the respective EO ligand in (CO)5W‐EO, while the carbon complexes 1MC–W(CO)5 have comparable bond dissociation energies (BDE) to CO. The heavier 18‐VE ligands 2ME (E=Si–Sn) are about 23–25 kcal mol?1 more strongly bonded than the associated EO ligand, while the BDE of 2MC is about 17–21 kcal mol?1 larger than that of CO. Analysis of the bonding with an energy‐decomposition scheme reveals that 1ME is isolobal with EO and that the nature of the bonding in 1ME–W(CO)5 is very similar to that in (CO)5W–EO. The ligands 1ME are slightly weaker π acceptors than EO while the π‐acceptor strength of 2ME is even lower.  相似文献   

17.
The reduction of Cp2MCl2 (M = Ti, Zr) with magnesium in THF in the presence of PMe3 affords the complexes Cp2M(PMe3)2 in high yields. These compounds lose one or both PMe3 ligands under very mild conditions. Cp2Ti(PMe3)2 reacts readily with CH3I, CH3C(O)Cl, PhSSPh, Me2PCH2CH2PMe2, CO, RCN (R = Me, t-Bu) or (RN)2S (R = t-Bu, Me3Si) to give the corresponding titanocene products. The structure of Cp2Zr(PMe3)2 has been determined by X-ray diffraction; the structural parameters are similar to those of the titanium analog Cp2Ti(PMe3)2 except that the Zr-P and Zr-C distances are longer.  相似文献   

18.
19.
Single crystals of octahedral mer‐cis‐[CoIIII(CH3)2(PMe3)3] ( 1 ) and square planar trans‐[NiIICl(CH3)(PMe3)2] ( 2 ), were obtained from solvent mixtures (methylcylohexane / pentane 1:1) and have been analyzed by X‐ray crystallography for the first time.  相似文献   

20.
Preparation and spectroscopical Investigations of M(CO)4L2 and M(CO)3L3 Complexes (M = Cr, Mo, W; L = Me3SiOCH2PMe2, Me2(CH2?CH)SiOCH2PMe2 The coordinating properties of the ligands L1 (?Me3SiOCH2PMe2) and L2 (?Me2ViSiOCH2PMe2)1) have been studied by synthesis and spectroscopic investigations (IR, NMR, MS) of their complexes M(CO)4L2 and M(CO)3L3(M = Cr, Mo, W). The complexes are obtained by replacement of norbornadiene (NBD) in M(CO)4NBD or cycloheptatriene CHT in M(CO)3CHT. Spectroscopic data (v(CO), δ δ) support the σ-donor/-π-acceptor model of the MP bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号