首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mass spectra of diethyl phenyl phosphates show substituent effects with electron-donating groups favouring the molecular ion M+˙, and the [M? C2H4]+˙, [M – 2C2H4]+˙ and [XPhOH]+˙ ions. The [PO3C2H6]+ (m/z 109) and [PO3H2]+ (m/z 81) ions are favoured by electron-withdrawing groups. Results suggest that the formation of the [XPhC2H3]+˙ ion involves rearrangement of C2H3 to the position ortho to the phosphate group. Ortho effects are also observed.  相似文献   

2.
In the electron impact mass spectra of azomethines derived from various substituted aromatic aldehydes and diarninodicyanoethene the superposition of two ortho effects concurring with the azomethine group is apparent: one involving the amino group of the diaminodicyanoethene part accounts for the cyclization to [C5H3N4]+ ions and the other involving ortho substituents of the benzylidene part which can interact with the azomethine moiety is responsible for specific fragment ions, suppressing the typical fragmentations of azomethines. The ortho effect was studied for the o-nitro derivative by labelling experiments, analysis of metastable transitions and collisional activation comparing model ions, demonstrating that the specific [M-H2O]+˙ and [C7H5NO2]+˙ ions are the result of cyclization processes.  相似文献   

3.
The mass spectra of five diazaphenanthrenes formed by photochemical cyclodehydrogenation of styryl diazines are investigated. It is shown that fragmentation of these compounds starts almost exclusively at the heterocyclic part of the molecule and proceeds by competitive α-cleavage. From the intensity ratios of the ions [M ? H˙]+, [M ? HCN]+˙, [M ? N2]+˙ and [M ? 2 HCN]+˙ generated in this way, each isomer can unequivocally be identified.  相似文献   

4.
The substituent effect on the single and double hydrogen atom transfer reactions in para-substituted benzoic acid isobutyl esters has been investigated by electron impact mass spectrometry. Electron-donating substituents favour formation of the [M? C4H8]+˙ ion generated by single hydrogen atom transfer reaction (McLafferty rearrangement), whereas electron-withdrawing substituents favour formation of the [M? C4H7]+ ion generated by double hydrogen atom transfer reaction. In the case of the latter compounds, the m/z56 ([C4H8]+˙) ion, which is generated by single hydrogen atom transfer reaction with charge migration, is very intense, while in the former compounds, the m/z56 ion is very weak. These observations can be reasonably explained on thermochemical grounds based on the sum of the standard heats of formation of the fragments.  相似文献   

5.
The major mass spectrometric fragments of ms-tetraphenylporphin and ms-tetra(p-chloro)phenylporphin are [M ? H]+˙ and [M ? Cl]+˙, respectively. Metal derivatives of these compounds give a modified characteristic fragmentation pattern with peak groups ending in the ions [M ? 4H]+˙, [M ? ? ? 5H]+˙ and [M ? 2? ? 2H]+˙ for the metallo ms-tetraphenylporphins, and [M ? ?Cl ? 2Cl ? 3H]+˙ and [M ? 2?Cl ? Cl ? H]+˙ for Mgms-tetra(p-chloro)phenylporphin. Deuterated metal derivatives indicate random hydrogen loss from both phenyl and pyrrole carbons. However, metal substituents do not significantly modify the fragmentation pattern in the case of ms-tetra(p-methoxy)phenylporphin. These patterns can be explained in terms of aromatic stabilization of the fragmentation products, coupled with charge localization on the π system in the free base, on the metal atom in the metallo derivatives and on the methoxy function in the p-methoxyphenyl derivative.  相似文献   

6.
The mass spectra of a series of β-ketosilanes, p-Y? C6H4Me2SiCH2C(O)Me and their isomeric silyl enol ethers, p-Y? C6H4Me2SiOC(CH3)?CH2, where Y = H, Me, MeO, Cl, F and CF3, have been recorded. The fragmentation patterns for the β-ketosilanes are very similar to those of their silyl enol ether counterparts. The seven major primary fragment ions are [M? Me·]+, [M? C6H4Y·]+, [M? Me2SiO]+˙, [M? C3H4]+˙, [M? HC?CCF3]+˙, [Me2SiOH]+˙ and [C3H6O]+˙ Apparently, upon electron bombardment the β-ketosilanes must undergo rearrangement to an ion structure very similar to that of the ionized silyl enol ethers followed by unimolecular ion decompositions. Substitutions on the benzene ring show a significant effect on the formation of the ions [M? Me2SiO]+˙ and [Me2SiOH]+˙, electron donating groups favoring the former and electron withdrawing groups favoring the latter. The mass spectral fragmentation pathways were identified by observing metastable peaks, metastable ion mass spectra and ion kinetic energy spectra.  相似文献   

7.
The collision-induced dissociation mass-analysed ion kinetic energy (CID MIKE) spectra (electron impact and chemical ionization) of five α-diazo-ω-arylsulphonylaminoalkan-2-ones and corresponding N-arylsulphonylazetidin-3-ones and N-arylsulphonylpyrrolidin-3-ones were studied. The [M ? N2]+˙ and [MH ? N2]+ ions of two types of the diazo ketones provide CID MIKE spectra similar to those of the corresponding M+˙ and MH+ of the heterocyclic compounds, i.e. a cyclization analogous to that in solution takes place. For the other three types of diazo compounds the Wolff rearrangement prevails in both the gas and liquid phases. The effect of the substituents on the cyclization process was studied. The data obtained permit the results of acid-catalysed cyclization of similar diazo ketones to be predicted on the basis of their CID MIKE spectra. Chemical ionization provides a closer similarity with reactions in solution than electron impact ionization, which can be rationalized by the protonation of the diazo ketone molecule being the driving force of the cyclization reaction either in solution or in the ion source of a mass spectrometer.  相似文献   

8.
Nitric oxide chemical ionization mass spectra of substituted benzenes obtained with the Townsend discharge technique were studied. There were four kinds of base peaks in the mass spectra, i.e. [M + NO]+˙, M+˙, [M ? H]+ and [M ? OR]+ (R = H, CH3). The formation of the specific ion [M + NO]+˙ was highly dependent on the kind of substituent, and it was produced more abundantly in the case of substitutions involving electron-accepting groups. The measure of [M + NO]+˙ production was evaluated from the value of the ratio [M + NO]+˙/M+˙. In mono-substitutions, it was clarified that the ratios of [M + NO]+˙/M +˙ were correlated with the Hammett substituent constant s?p or the electrophilic substituent constant s?p+. Monosubstitutions (C6H5R) and toluene substitutions (CH3C6H4R) could be classified into six groups in terms of base peak species, [M + NO]+˙/M+˙ ratios and substituents. In disubstitutions, the mass spectral patterns were governed by the combination of substituents. Mass spectral distinctions among ortho, meta and para isomers could be made in many cases.  相似文献   

9.
A study of the chemical ionization (CI) and collisional activation (CA) spectra of a number of α, β-unsaturated nitriles has revealed that the even-electron ions such as [MH]+ and [MNH4]+ produced under chemical ionization undergo decomposition by radical losses also. This results in the formation of M +˙ ions from both [MH]+ and [MNH4]+ ions. In the halogenated molecules losses of X˙ and HX compete with losses of H˙ and HCN. Elimination of X˙ from [MH]+ is highly favoured in the bromoderivative. The dinitriles undergo a substitution reaction in which one of the CN groups is replaced with a hydrogen radical and the resulting mononitrile is ionized leading to [M ? CN + 2H]+ under CI(CH4) or [M ? CN + H + NH4] and [M ? CN + H + N2H7]+ under CI(NH3) conditions.  相似文献   

10.
It is shown by ion cyclotron resonance measurements that ion/molecule reactions, leading to substitution or reduction product ions from chloro- and nitrobenzene with the title amines, are those between the molecular ions [RNH2]+ or [C6H5X]+˙ and their respective counterparts C6H5X or RNH2. The protonated reagent gas ions [RNH3]+ are not involved in these reactions. In the case of nitrobenzene, adduct ions [C6H5NO2·RNH3]+ do not decompose within the time scale of the measurements. The results obtained are compared with those found under chemical ionization conditions.  相似文献   

11.
The mass spectral fragmentation of trihalogenated methyl esters, formed in the reactions of monochlorinated methyl propenoates and 2-butenoates with Cl2, BrCl and Br2, have been investigated. In most cases α-cleavage gives the base peak, [COOCH3]+, the peaks originating from the subsequent losses of one or two halogen atoms also being abundant. The primary loss of a halogen atom is more prominent in the C4 derivatives, Br˙ and Cl˙ being preferentially lost from the 2- and 3-positions, respectively. The McLafferty rearrangement yields in one case the base peak; the 2-halo compounds could in general be distinguished by that fragmentation. Typical for all 2-bromo-substituted methyl butanoates studied is the base peak, [C3H3]+, at m/z 39, and for some 3-halo compounds the peaks at m/z 95, [C2H4ClO2]+ and 139, [C2H4BrO2]+.  相似文献   

12.
Homoadamantane derivatives can be divided into two groups according to their mass spectra. To the first group belong compounds with electron attracting substituents (COOH, CI, COOCH3, Br); compounds with electron releasing substituents (OCH3, OH, NH3, NHCOCH3) constitute the second group. The most characteristic feature of the first group compounds is the splitting off of the substituent. The hydrocarbon fragment [C11H17]+ thus formed then loses olefin molecules with the formation of corresponding ionic species C11?nH17?2n. The 3-substituted compounds of this group undergo thermal Wagner-Meerwein type rearrangements into adamantane derivatives, resulting in the [C10H15]+ (m/e 135) ion formation; this is the main difference between 1- and 3-substituted homoadamantanes. The series of [CnH2n?6X]+ ions (where X = OCH3, OH, NH2, NHCOCH3, n = 6 to 10) are characteristic of the mass spectra of the second group compounds, the ion [C6H6X]+, [M ? C5H11]+ being the most abundant. The intensity ratio of [M ? C5H11]+ to [M ? C4H9]+ ions is 10:1 for 1-substituted and 3:1 for 3-substituted compounds of this group, allowing the location of the substituent. Some individual features of the spectra are also reported.  相似文献   

13.
The decomposing molecular cations derived from (substituted) 2-nitrothiobenzamides fragment by complex rearrangement reactions. When the alkyl substituents (R) attached to N are methyl, the major fragmentations are [M]+˙ → [M? SO] and [M? SO] → [(M? SO)–R˙]+. This remains a basic pathway when R ? Et, but other rearrangements are also observed. For example, when R=Et, additional competitive processes are [M] → [M? HO˙]+ and [M] → [M? C2H4O]+˙.  相似文献   

14.
The loss of methyl from unstable, metastable and collisionally activated [CH2?CH? C(OH)?CH2]+˙ ions (1+˙) was examined by means of deuterium and 13C labelling, appearance energy measurements and product identification. High-energy, short-lived 1+˙ lose methyl groups incorporating the original enolic methene (C(1)) and the hydroxyl hydrogen atom (H(0)). The eliminations of C(1)H(1)H(1)H(4) and C(4)H(4)H(4)H(0) are less frequent in high-energy ions. Metastable 1+˙ eliminate mainly C(1)H(1)H(1)H(4), the elimination being accompanied by incomplete randomization of the five carbon-bound hydrogen atoms. The resulting [C3H3O]+ ions have been identified as the most stable CH2?CH? CO+ species. The appearance energy for the loss of methyl from 1 was measured as AE[C3H3O]+ = 10.47 ± 0.05 eV. The critical energy for 1+˙ → [C3H3O]+ + CH3˙ is assessed as Ec ? 173 kJ mol?1. Reaction mechanisms are proposed and discussed.  相似文献   

15.
The mass spectral fragmentations of methyl mono- and dichlorobutanates have been studied. Deutrium labelling and metastable ion analysis were used to elucidate the fragmentation mechanisms. The molecular ion peaks of the esters are weak and show only in the spectra of the monochloro isomers. A McLafferty rearrangement gives the base peaks in the spectra of methyl 2-chloro-, 4-chloro- and 4,4-dichlorobutanoate; α-cleavage, [COOCH3]+, in methyl 2,2- and 2,4-dichlorobutanoate; [M? Cl]+, in methyl 3-chlorobutanoate; [M? Cl? HCl]+, in methyl 3,4-dichlorobutanoate; [M? Cl? CH2CO]+, in methyl 3,3-dichlorobutanoate and [M? Cl? COOCH3], in methyl erythro- and threo-2,3-dichlorobutanoate. The mass spectra of the stereoisomers are nearly identical, the loss of a chlorine atom and the McLafferty rearrangement giving the higher peaks in the spectrum of the threo form.  相似文献   

16.
Mass spectra and ion kinetic energy (IKE) spectra of o-, m- and p-d1 ethyl benzoates have given further information on the loss of OH˙ and OD˙ from the [M ? C2H4]+˙ ions. The ‘metastable peaks’ in the mass spectra give information on fragmentations in the field-free region following the electric sector; the IKE spectra give information on fragmentations in the field-free region preceding this sector. Transfer of hydrogen and deuterium from the ortho-positions on the ring to the carboxyl group can occur, but scrambling of ring hydrogens does not take place. A sample of o-d1 benzoic acid was also examined and confirmed that similar transfer reactions occur in this compound too.  相似文献   

17.
A study of the electron ionization mass spectra of certain azadispiro(5.1.5.2)pentadec-9-ene-7,15-diones and azadispiro(4.1.4.2)tridec-8-ene-6,13-diones and their derivatives has revealed that these molecules undergo fragmentation primarily by two routes, viz. loss of CO and elimination of the substituent on the pyrrolidine nitrogen. Under positive ionization conditions loss of CO is the predominant process in the diones as it releases the ring strain, while in the 6- or 7-ols loss of the substituent on nitrogen is the favoured pathway. The further decomposition pathways of these primary fragments [M ? CO]+˙ and [M ? OR3]+ have been delineated with the help of high-resolution mass measurements, D2O exchange and metastable spectra, These compounds give very simple negative ion spectra showing only [M ? OR3]? and [NCO]? ions except the N-hydroxy compounds which show [M ? H]? ions as well.  相似文献   

18.
The H2 and CH4 chemical ionization mass spectra of a selection of substituted nitrobenzenes have been determined. It is shown that reduction of the nitro group to the amine is favoured by high source temperatures and the presence of water in the ion source. The H2 chemical ionization mass spectra are much more useful for distinguishing between isomeric compounds than the CH4 CI mass spectra because of the more extensive fragmentation. For ortho substituents bearing a labile hydrogen abundant [MH ? H2O]+ fragments are observed. When the substituent is electron-releasing both ortho and para substituted nitrobenzenes show abundant [MH? OH]+ fragment ions while meta substituted compounds show abundant loss of NO and NO2 from [MH]+. The latter fragmentation is interpreted in terms of protonation para to the substituent or ortho to the vitro function, while the first two fragmentation routes arise from protonation at the nitro group. When the substituent is electron-attracting the chemical ionization mass spectra of isomers are very similar except for the H2O loss reaction for ortho compounds.  相似文献   

19.
Phosphate esters are important commercial products that have been used both as flame retardants and as plasticizers. To analyze these compounds by gas chromatographic mass spectrometry, it is important to understand the mass spectra of these compounds using various ionization modes. This paper is a systematic overview of the electron impact (EI), electron capture negative ionization (ECNI) and positive chemical ionization (PCI) mass spectra of 13 organophosphate esters. These data are useful for developing and optimizing analytical measurements. The EI spectra of these 13 compounds are dominated by ions such as H4PO4+, (M ? Cl)+, (M ? CH2Cl)+ or (M)+ depending on specific chemical structures. The ECNI spectra are generally dominated by (M ? R)?. The PCI spectra are mainly dominated by the protonated molecular ion (M + H)+. The branching of the alkyl substituents, the halogenation of the substituents and, for aromatic phosphate esters, ortho alkylation of the ring are all significant factors controlling the details of the fragmentation processes. EI provides the best sensitivity for the quantitative measurement of these compounds, but PCI and ECNI both have considerable qualitative selectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The [C4H70]+ ions [CH2?CH? C(?OH)CH3]+ (1), [CH3CH?CH? C(?OH)H]+ (2), [CH2?C(CH3)C(?OH)H]+ (3), [Ch3CH2CH2C?O]+ (4) and [(CH3)2CHC?O]+ (5) have been characterized by their collision-induced dissociation (CID) mass spectra and charge stripping mass spectra. The ions 1–3 were prepared by gas phase protonation of the relevant carbonyl compounds while 4 and 5 were prepared by dissociative electron impact ionization of the appropriate carbonyl compounds. Only 2 and 3 give similar spectra and are difficult to distinguish from each other; the remaining ions can be readily characterized by either their CID mass spectra or their charge stripping mass spectra. The 2-pentanone molecular ion fragments by loss of the C(1) methyl and the C(5) methyl in the ratio 60:40 for metastable ions; at higher internal energies loss of the C(1) methyl becomes more favoured. Metastable ion characteristics, CID mass spectra and charge stripping mass spectra all show that loss of the C(1) methyl leads to formation of the acyl ion 4, while loss of the C(5) methyl leads to formation of protonated vinyl methyl ketone (1). These results are in agreement with the previously proposed potential energy diagram for the [C5H10O]+˙ system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号