首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A practical non-perturbative approach is presented for multiphoton ionization of atoms induced by circularly polarized radiation. By use of co-ordinate rotation transformation and L2-discretization of the atomic continuum, the complex energy spectrum of a stationary quesienergy operator can be located and multiphoton ionization rates determined as a function of time and arbitrary photon intensity. The theory is applied to the two-photon ionization of the H atom in intense fields.  相似文献   

2.
The fragmentation dynamics of indole molecules following excitation at 193.3 nm, and at a number of different wavelengths in the range 240 < or = lambda(phot) < or = 286 nm, have been investigated by H Rydberg atom photofragment translational spectroscopy. The longer wavelength measurements have been complemented by measurements of excitation spectra for forming parent and fragment ions by two (or more) photon ionisation processes. Analysis identifies at least three distinct contributions to the observed H atom yield, two of which are attributable to dissociation of indole following radiationless transfer from the 1pi pi* excited states (traditionally labelled 1L(b) and 1L(a)) prepared by UV single photon absorption. The structured channel evident in total kinetic energy release (TKER) spectra recorded at lambda(phot) < or = 263 nm is rationalised in terms of N-H bond fission following initial pi* <-- pi excitation and subsequent coupling to the 1pi sigma* potential energy surface via a conical intersection between the respective surfaces--thereby validating recent theoretical predictions regarding the importance of this process (Sobolewski et al., Phys. Chem. Chem. Phys., 2002, 4, 1093). Analysis provides an upper limit for the N-H bond strength in indole: D0(H-indolyl) < or = 31,900 cm(-1). Unimolecular decay of highly vibrationally excited ground state molecules formed by internal conversion from the initially prepared 1pi pi* states is a source of (slow) H atoms but their contribution to the TKER spectra measured in the present work is dwarfed by that from H atoms generated by one or more (unintended but unavoidable) multiphoton processes.  相似文献   

3.
In the hydrogen‐bond patterns of phenyl bis(2‐chlorobenzylamido)phosphinate, C20H19Cl2N2O2P, (I), and N,N′‐bis(2‐chlorobenzyl)‐N′′‐(2,2,2‐trifluoroacetyl)phosphoric triamide, C16H15Cl2F3N3O2P, (II), the O atoms of the related phosphoryl groups act as double H‐atom acceptors, so that the P=O...(H—N)2 hydrogen bond in (I) and the P=O...(H—Namide)2 and C=O...H—NC(O)NHP(O) hydrogen bonds in (II) are responsible for the aggregation of the molecules in the crystal packing. The presence of a double H‐atom acceptor centre is a result of the involvement of a greater number of H‐atom donor sites with a smaller number of H‐atom acceptor sites in the hydrogen‐bonding interactions. This article also reviews structures having a P(O)NH group, with the aim of finding similar three‐centre hydrogen bonds in the packing of phosphoramidate compounds. This analysis shows that the factors affecting the preference of the above‐mentioned O atom to act as a double H‐atom acceptor are: (i) a higher number of H‐atom donor sites relative to H‐atom acceptor centres in molecules with P(=O)(NH)3, (N)P(=O)(NH)2, C(=O)NHP(=O)(NH)2 and (NH)2P(=O)OP(=O)(NH)2 groups, and (ii) the remarkable H‐atom acceptability of this atom relative to the other acceptor centre(s) in molecules containing an OP(=O)(NH)2 group, with the explanation that the N atom bound to the P atom in almost all of the structures found does not take part in hydrogen bonding as an acceptor. Moreover, the differences in the H‐atom acceptability of the phosphoryl O atom relative to the O atom of the alkoxy or phenoxy groups in amidophosphoric acid esters may be illustrated by considering the molecular packing of compounds having (O)2P(=O)(NH) and (O)P(=O)(NH)(N)groups, in which the unique N—H unit in the above‐mentioned molecules almost always selects the phosphoryl O atom as a partner in forming hydrogen‐bond interactions. The P atoms in (I) and (II) are in tetrahedral coordination environments, and the phosphoryl and carbonyl groups in (II) are anti with respect to each other (the P and C groups are separated by one N atom). In the crystal structures of (I) and (II), adjacent molecules are linked via the above‐mentioned hydrogen bonds into a linear arrangement parallel to [100] in both cases, in (I) by forming R22(8) rings and in (II) through a combination of R22(10) and R21(6) rings.  相似文献   

4.
In terms of the density functional theory using the B3LYP functional, 1,2,3,4,5,6,7-heptaphenylcycloheptatriene was shown to be the most stable in the boat conformation of the cycloheptatriene ring with the H atom in the equatorial position. 1,5-Sigmatropic shifts of the H atom along the seven-membered ring perimeter take place when it is in the axial position through the asymmetric transition state with the barrier ΔE ZPE = 28.7 kcal mol?1. The H atom can attain the axial position upon inversion of the seven-membered ring, which is accompanied by the orthogonal turn of the phenyl group at the sp3-hybridized C atom (ΔE ZPE = 22.6 kcal mol?1). The energy barrier to the circular rearrangement of the H atom (ΔE ZPE = 32.2 kcal mol?1) explains formation of isomers during the high-temperature synthesis of di(p-tolyl)pentaphenylcycloheptatriene. The barrier to the 1,5-sigmatropic shifts of the phenyl group is 19.7 kcal mol?1 higher than that for the competing shifts of the H atom.  相似文献   

5.
6.
The title compound, C9H13N4O3+·NO3, is the first structurally characterized Schiff base derived from semicarbazide and pyridoxal. Unusually for an unsubstituted semicarbazone, the compound adopts a syn conformation, in which the carbonyl O atom is in a cis disposition relative to the azomethine N atom. This arrangement is supported by a pair of hydrogen bonds between the organic cation and the nitrate anion. The cation is essentially planar, with only a hydroxymethyl O atom deviating significantly from the mean plane of the remaining atoms (r.m.s. deviation of the remaining non‐H atoms = 0.01 Å). The molecules are linked into flat layers by N—H...O and C—H...O hydrogen bonds. O—H...O hydrogen bonds involving the hydroxymethyl group as a donor interconnect the layers into a three‐dimensional structure.  相似文献   

7.
8.
The structural parameters of glycine zwitterion in water were studied by means of the integral equation method in the framework of the RISM approximation. According to calculations, five water molecules are located in the nearest environment of the -NH 3 + group, and two of them are the H-bonded with this group. At the same time, six water molecules are located in the nearest environment of the ?COO? group, and three of them are the H-bonded with this group. The average number of water molecules in the first hydration shell of ?CH2 group is four. It has been shown that the probability of hydrogen bond formation between water molecules and the hydrogen atom H1 of the ?NH 3 + group is low, and there is no H-bonding between water molecules and the nitrogen atom the ?NH 3 + group.  相似文献   

9.
It is shown by 15N and specific 13C labelling that ~50% of the molecules of hydrogen cyanide, eliminated within ~10?6 s upon electron impact of benzonitrile, contains the original cyano carbon atom, whereas the remaining percentage contains one of the phenyl ring carbon atoms at random. This is even more dramatic for the molecular ions of benzonitrile which decompose in the first and second field-free regions of the VG Micromass ZAB-2F high-field mass spectrometer used. Then only 5–7% of the eliminated molecules of hydrogen cyanide contains the original cyano carbon atom. A cycloaddition-cycloreversion process in the molecular ions, leading to ionized 1-cyano-1,3-hexadien-5-yne as an intermediate in the hydrogen cyanide loss, is proposed to explain this.  相似文献   

10.
The 3d‐metal mediated nitrene transfer is under intense scrutiny due to its potential as an atom economic and ecologically benign way for the directed amination of (un)functionalised C?H bonds. Here we present the isolation and characterisation of a rare, trigonal imido cobalt(III) complex, which bears a rather long cobalt–imido bond. It can cleanly cleave strong C?H bonds with a bond dissociation energy of up to 92 kcal mol?1 in an intermolecular fashion, unprecedented for imido cobalt complexes. This resulted in the amido cobalt(II) complex [Co(hmds)2(NHtBu)]?. Kinetic studies on this reaction revealed an H atom transfer mechanism. Remarkably, the cobalt(II) amide itself is capable of mediating H atom abstraction or stepwise proton/electron transfer depending on the substrate. A cobalt‐mediated catalytic application for substrate dehydrogenation using an organo azide is presented.  相似文献   

11.
We present a selectively pulsed (SP) generation of sequences to transfer the spin order of parahydrogen (pH2) to heteronuclei in weakly coupled spin systems. We analyze and discuss the mechanism and efficiency of SP spin order transfer (SOT) and derive sequence parameters. These new sequences are most promising for the hyperpolarization of molecules at high magnetic fields. SP-SOT is effective and robust despite the symmetry of the 1H-13C J-couplings even when precursor molecules are not completely labeled with deuterium. As only one broadband 1H pulse is needed per sequence, which can be replaced for instance by a frequency-modulated pulse, lower radiofrequency (RF) power is required. This development will be useful to hyperpolarize (new) agents and to perform the hyperpolarization within the bore of an MRI system, where the limited RF power has been a persistent problem.  相似文献   

12.
13.
Quantum chemical calculations of the dissociation energy of the C-H bond in the ??-hydroperoxide fragment of Me2CHOOH were carried out. It was shown that abstraction of H atom is accompanied by dissociation of the O-O bond. Density functional calculations of transition states of the reactions of ·CH3, CH3OO·, and HO2 · radicals with the C-H bond in the ??-hydroperoxide fragment of Me2CHOOH were carried out. It was established that H atom abstraction is accompanied by concerted dissociation of the O-O bond. For 45 peroxides R1R2CHOOH, R1R2CHOOR3, and R1R2CHOOC(O)R3 (R1, R2 = H, Me, Et, Ph, H2C=CH), the enthalpies of H atom abstraction from the C-H bond in the a-hydroperoxide fragment with fragmentation of the peroxides at the O-O bond were calculated. The kinetic parameters for 12 classes of radical abstraction reactions with fragmentation of molecules were calculated from experimental data within the framework of the model of intersecting parabolas. The activation energies and reaction rate constants of H atom abstraction from C-H bonds of a-peroxide fragments involving peroxyl and alkyl radicals were determined for 45 peroxides of different structure.  相似文献   

14.
Empirical atom—atom potential calculations for nietiamide and cimetidine have been made in order to show the behaviour of the species in solution at 37°C. It was assumed that hydration should eliminate electrostatic interaction and consequently calculations made on molecules without charge. For both molecules very rigid gauche conformations are obtained with a population of more than 90%, which show a remarkable parallelism between the imidazole ring and thiourea (or cyanoguanidine) group planes. It seems that this conformation is necessary for the interaction with histamine H2-receptors. While metiamide shows a conformational equilibrium among configurational isomers, cimetidine shows practically only one configurational isomer (Z, E). This fact would apparently explain its greater biological specificity.  相似文献   

15.
The kinetics of the reactions of H atoms with H2S and with COS were measured at 298deg;K in a flow system using mass-spectrometric detection. The rate constants were found to be 3.8 × 10?13 and 2.2 × 10?14 cm3 part?1 sec?1, respectively, with an estimated accuracy of 25%. At high flow rates of H2S, 0.5 molecules of H2S are consumed per H atom originally present. At all flow rates of COS, H2S is a major product, CO production equals COS consumption, and 0.5 molecules of COS are consumed per H atom. The results are consistent with the reaction HS + HS → H2S + S being the dominant process for thiyl radicals, and evidence is presented to indicate that its reaction rate is close to collisional frequency.  相似文献   

16.
The role of hydrogen atoms as surface ligands on metal nanoclusters is of profound importance but remains difficult to directly study. While hydrogen atoms often appear to be incorporated formally as hydrides, evidence suggests that they donate electrons to the cluster's delocalized superatomic orbitals and may consequently behave as acidic protons that play key roles in synthetic or catalytic mechanisms. Here we directly test this assertion for the prototypical Au9(PPh3)8H2+ nanocluster, formed by addition of a hydride to the well-characterized Au9(PPh3)83+. Using gas-phase infrared spectroscopy, we were able to unambiguously isolate Au9(PPh3)8H2+ and Au9(PPh3)8D2+, revealing an Au−H stretching mode at 1528 cm−1 that shifts to 1038 cm−1 upon deuteration. This shift is greater than the maximum expected for a typical harmonic potential, suggesting a potential governing cluster-H bonding that has some square-well character consistent with the hydrogen nucleus behaving as a metal atom in the cluster core. Complexing this cluster with very weak bases reveals a redshift of 37 cm−1 in the Au−H vibration, consistent with those typically seen for moderately acidic groups in gas phase molecules and providing an estimate of the acidity of Au9(PPh3)8H2+, at least with regard to its surface reactivity.  相似文献   

17.
The potential energy surface for the reaction of hydrogen atom with carbon dioxide is explored by using various quantum chemical methods including W1BD, CBS-QB3, G4, G3B3, CCSD(T), QCISD(T), CCSD, M06-2X, and BB1K.Transition state theory and a modified strong collision/RRKM model are employed to calculate the thermal rate coefficients for the reaction. The results of calculation show that the overall rate constant for the reaction H + CO2 are pressure-independent over the temperature range of 300 to 3500 K. By using the energies at the W1BD level, the non-Arrhenius expression k = 9.8T 2.9exp(?74.8 kJ/mol/RT) L mol?1 s?1 was found for the reaction.  相似文献   

18.
Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid‐state NMR spectroscopic investigations on 1‐butanol molecules confined in the hydrophilic mesoporous SBA‐15 host. A range of NMR spectroscopic measurements comprising of 1H spin–lattice (T1), spin–spin (T2) relaxation, 13C cross‐polarization (CP), and 1H,1H two‐dimensional nuclear Overhauser enhancement spectroscopy (1H,1H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide‐line 2H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1‐butanol in SBA‐15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1‐butanol are extremely restricted in the confined space of the SBA‐15 pores. The dynamics of the confined molecules of 1‐butanol imply that the 1H,1H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1‐butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA‐15 pores in a time‐average state by solid‐state NMR spectroscopy with the 1H,1H 2D NOESY technique.  相似文献   

19.
This study demonstrates the use of uneven atomic basis sets for ab initio calculations of NMR shielding in the localized orbital/local origin (LORG) approach with norbornenone as the test case. We distinguish between locally dense sets (extended basis on target atom only) and locally saturated sets (extended bases on target atom and atoms in its first bonding sphere), using 6-311G ** and 6-31G sets to describe the high and low level of function sets. It is shown that the use of these uneven sets can simulate high basis set level calculations of shieldings for 1H and for all the 13C nuclei in this molecule and, hence, allows quite accurate ab initio calculations of shielding properties of these nuclei in large molecules using relatively modest computational facilities. The shielding of the double-bonded 17O nucleus is apparently sensitive to basis-set quality beyond the first bonding sphere. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Pyrimethamine is an antimalarial drug. The cocrystal salt form of pyrimethamine with 3,5‐dihydroxybenzoic acid in water solvent has been synthesized, namely 2,4‐diamino‐5‐(4‐chlorophenyl)‐6‐ethylpyrimidin‐1‐ium 3,5‐dihydroxybenzoate hemihydrate, C12H14ClN4+·C7H5O4?·0.5H2O. X‐ray diffraction data were collected at room temperature. Refinement of the crystal structure was carried out using the classical Independent Atom Model (IAM), while the electrostatic properties were studied by transferring electron‐density parameters from an electron‐density database. The Cl atom was refined anharmonically. The results of both refinement methods were compared. Topological analyses were carried out using Bader's theory of Atoms in Molecules (AIM). The three‐dimensional Hirshfeld surface analysis and the two‐dimensional fingerprint maps of individual molecules revealed that the crystal structures are dominated by H…O/O…H and H…H contacts. Other close contacts are also present, including weak C…H/H…C contacts. Charge transfer between the pyrimethamine and 3,5‐dihydroxybenzoic acid molecules results in a molecular assembly based on strong intermolecular hydrogen bonds. This is further validated by the calculation of the electrostatic potential based on transferred electron‐density parameters. The current work proves the significance of the transferability principle in studying the electron‐density‐derived properties of molecules in cases where high‐resolution diffraction data at low temperature are not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号