共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Linear polymer blends and semi-interpenetrating polymer networks (IPNs) with controlled hydrogen bonding interactions based on poly(styrene-co-methacrylic acid) (STMAA) and poly(butyl methacrylate) (PBMA) were studied by an ESR spin probe method. The observed composite ESR spectra with fast- and slow-motion components in all the samples were ascribed to two-phase morphology. For linear blends, the temperatures T(a) corresponding to appearance of the fast motion, T(d) corresponding to the disappearance of slow motion, T(5mT) and the rotational correlation times tau(c) increased with increasing carboxylic acid content in STMAA. It was concluded that the degree of mixing of the blends was improved with increasing carboxylic acid content, owing to the enhanced hydrogen bonding interactions between the carboxylic acids in STMAA and the ester groups in PBMA. With respect to semi-IPN samples, there existed a competition in the microphase structure between the intercomponent hydrogen bonding interactions, which improved the miscibility of the samples and the intracomponent cross-linking, which might lead to phase separation in the systems with strong specific interactions. When the semi-IPN contained 29 mol% carboxylic acid, the temperatures T(d), T(5mT) and tau(c) reached their minimum values, which indicated that the sample reached its maximum miscibility. 相似文献
3.
J. H. Walton J. B. Miller C. M. Roland 《Journal of Polymer Science.Polymer Physics》1992,30(6):527-532
The miscibility of two-component polymer blends has been investigated using xenon-129 (129Xe) nuclear magnetic resonance (NMR) to probe the phase morphology. The chemical shift of 129Xe dissolved in a given polymer is unique, thus heterogeneous blends with large domain sizes exhibit two 129Xe NMR lines. When a single resonance is obtained, the data are consistent with miscibility, yielding an upper bound on the domain size. The temperature dependence of the relative solubilities and chemical shifts of 129Xe dissolved in the pure components may allow a determination of the phase morphology in blends exhibiting a single resonance. The method is used to demonstrate that polychloroprene and 25% epoxidized 1,4-polyisoprene form a miscible blend. 相似文献
4.
Kazunori Matsui Takayuki Kaneko Yasunori Yaginuma Masaru Ryu 《Journal of Sol-Gel Science and Technology》1997,9(3):273-277
A spin probe TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy) was dissolved in a tetraethyl orthosilicate sol-gel reaction
system and measured by electron spin resonance spectroscopy at 295 K. The nitrogen hyperfine coupling constant was from 1.64–1.66
mT in the sol-gel solutions. The values were sensitive to the ethanol-to-water ratio of the solutions. The hyperfine coupling
constant in the xerogels was 1.70 mT, which was almost the same as that in water, indicating that the probe molecules were
trapped in silica pores with water adsorbed on the silica surfaces. The motion of TEMPOL in the xerogels was considerably
slower than in the sol-gel solutions. The local viscosity estimated was from 70–90 cP. The ESR spectra of TEMPOL were altered
during the sol-gel process, indicating that adsorbed water on the silicas surfaces has an important role for trapping organic
molecules in sol-gel glasses. 相似文献
5.
The reorientation of dye molecules can be used to monitor the segmental dynamics of a polymer melt. We utilize this technique to measure stress-induced mobility in a lightly cross-linked poly(methyl methacrylate) (PMMA) glass during tensile creep deformation. At 377 K (18 K below the glass transition temperature Tg), the mobility increased by a factor of 100 during deformation with a stress of 20 MPa. Generally, the mobility increased as the stress, strain, and strain rate increased. After removing the stress, we observed that the enhanced mobility slowly disappeared during strain recovery. At 377 K, when the stress is lower than 11 MPa, almost no mobility enhancement was observed. Once the stress crossed this threshold value, the mobility dramatically increased. 相似文献
6.
A new semiempirical equation has been proposed for the rate of approach of highly flattened droplets, applicable in the whole range of the ratios, p, of viscosity of the dispersed droplets and matrix. The equation is utilized to calculate the probability, P c, that the droplet collision induced by shear or extensional flow is followed by the droplet fusion for systems with Newtonian droplets and Newtonian or viscoelastic matrix. The comparison of the results of these calculations with available experimental data and with the calculation using the trajectory analysis shows that the proposed model of the matrix drainage provides more reasonable results than the broadly applied model of partially mobile interface. 相似文献
7.
We investigate the structure and thermodynamics of interfaces in dense polymer blends using Monte Carlo (MC) simulations and self‐consistent field (SCF) calculations. For structurally symmetric blends we find quantitative agreement between the MC simulations and the SCF calculations for excess quantities of the interface (e.g., interfacial tension or enrichment of copolymers at the interface). However, a quantitative comparison between profiles across the interface in the MC simulations and the SCF calculations has to take due account of capillary waves. While the profiles in the SCF calculations correspond to intrinsic profiles of a perfectly flat interface the local interfacial position fluctuates in the MC simulations. We test this concept by extensive Monte Carlo simulations and study the cross‐over between “intrinsic” fluctuations which build up the local profile and capillary waves on long (lateral) length scales. Properties of structurally asymmetric blends are exemplified by investigating polymers of different stiffness. At high incompatibilities the interfacial width is not much larger than the persistence length of the stiffer component. In this limit we find deviations from the predictions of the Gaussian chain model: while the Gaussian chain model yields an increase of the interfacial width upon increasing the persistence length, no such increase is found in the MC simulations. Using a partial enumeration technique, however, we can account for the details of the chain architecture on all length scales in the SCF calculations and achieve good agreement with the MC simulations. In blends containing diblock copolymers we investigate the enrichment of copolymers at the interface and the concomitant reduction of the interfacial tension. At weak segregation the addition of copolymers leads to compatibilization. At high incompatibilities, the homopolymer‐rich phase can accommodate only a small fraction of copolymer before the copolymer forms a lamellar phase. The analysis of interfacial fluctuations yields an estimate for the bending rigidity of the interface. The latter quantity is important for the formation of a polymeric microemulsion at intermediate segregation and the consequences for the phase diagram are discussed. 相似文献
8.
Various morphologies can be realized via processing of incompatible polymer blends such as droplets or fibers in a matrix and stratified or cocontinuous structures as is shown for the model system polyethylene/polystyrene The structures induced are usually intrinsically unstable. Modelling of extrusion processes and continuous mixers yields expressions for the shear rate and shear stress but also for the limited residence time and the number of reorientations. These results could be combined with detailed knowledge of respectively distributive and dispersive mixing processes to predict the development of various morphologies as a function of time. Control of morphology is of utmost importance. In the case of droplets in a matrix, usually encountered in toughening of glassy polymers, the use of compatibilizers and/or reactions at the interphases is utilized. However, in designing specific morphologies i.e. structured polymer blends, fixation of intermediate morphologies before final processing is a prerequisite. Some preliminary results will be presented. 相似文献
9.
Ladislav Omelka Imrich Vrbel Katarína Erentov Jochen Dauth Bernward Deubzer Johann Weis 《Helvetica chimica acta》1996,79(3):663-669
The triazenols 4-R1? C6H4? N?N? N(OH)? R2 ( 1 ), oxidized with t-BuO radicals, produced nitroxide radicals R1? C6H4? N(O?)? N?N(R2) +O? ( 5 ). The suggested radical structure was confirmed by 15N-labeling. The reaction of triazenols 1 with PbO2 proceeded under N2 elimination, in which case nitroxides R1? C6H4? N(R2)? O?( 2 ) were observed as the final radical products. The intermediate R1? C6H radicals were identified by spin-trapping. 相似文献
10.
Ronald Koningsveld 《Macromolecular Symposia》1994,78(1):1-13
The general principles of thermodynamic equilibrium in binary liquid systems are reviewed briefly, and extended to quasi-binary mixtures of polydisperse polymers. Molecular models allowing actual phase behaviour to be discussed in terms of molecular parameters are exposed to data on the system polystyrene/polyvinylmethylether. Disparity in size and share between the repeating units must be introduced to obtain reasonable agreement between theory and experiment. The neccessary introduction of the molar-mass distribution detracts from this agreement which makes clear that other aspects exist that must be taken into account. For example, cross association between repeating units has a marked effect on phase behaviour. Blends are subject to two kinds of thermodynamic aging which lead either to considerable mutual solubility in supposedly immiscible blends, or to metastable equilibria transforming into states of lower Gibbs energy. In both cases physical proerties of the blend will change with time. 相似文献
11.
Theoretical models of the interfacial tension coefficient in polymer blends, v12, were evaluated. A new working relation was derived that makes it possible to compute v12 from the chemical structure of two polymers. The calculations involve determination of the dispersive, polar and hydrogen-bonding parts of the solubility parameter from the tabulated group and bond contributions. The computed values of v12 for 46 blends were found to follow the experimental ones with a reasonable scatter of ± 36%. Next, the experimental methods of v12-measurements were critically examined. Although many have been developed for low viscosity Newtonian fluids, most are irrelevant to industrial polymeric systems. For the present studies two were selected. Values of v12 were measured using the so-called “capillary breakup method,” and a newly developed method based on the retraction rate of deformed drop. 相似文献
12.
Benhamou M Ridouane H Hachem EK Derouiche A Rahmoune M 《The Journal of chemical physics》2005,122(24):244913
We consider here a low-density assembly of colloidal particles immersed in a critical polymer mixture of two chemically incompatible polymers. We assume that, close to the critical point of the free mixture, the colloids prefer to be surrounded by one polymer (critical adsorption). As result, one is assisted to a reversible colloidal aggregation in the nonpreferred phase, due the existence of a long-range attractive Casimir force between particles. This aggregation is a phase transition driving the colloidal system from dilute to dense phases, as the usual gas-liquid transition. We are interested in a quantitative investigation of the phase diagram of the immersed colloids. We suppose that the positions of particles are disordered, and the disorder is quenched and follows a Gaussian distribution. To apprehend the problem, use is made of the standard phi(4) theory, where the field phi represents the composition fluctuation (order parameter), combined with the standard cumulant method. First, we derive the expression of the effective free energy of colloids and show that this is of Flory-Huggins type. Second, we find that the interaction parameter u between colloids is simply a linear combination of the isotherm compressibility and specific heat of the free mixture. Third, with the help of the derived effective free energy, we determine the complete shape of the phase diagram (binodal and spinodal) in the (Psi,u) plane, with Psi as the volume fraction of immersed colloids. The continuous "gas-liquid" transition occurs at some critical point K of coordinates (Psi(c) = 0.5,u(c) = 2). Finally, we emphasize that the present work is a natural extension of that, relative to simple liquid mixtures incorporating colloids. 相似文献
13.
14.
Bernard Boutevin Yves Pietrasanta Jean-Jacques Robin Jos Pabiot Benoit Leseur 《Macromolecular Symposia》1992,57(1):371-381
Among the different ways of recycling plastic wastes, one of the techniques used consists in processing these products without any preliminary separation of the different plastic families. The bad performances of the obtained materials lead to the use of emulsifiers. The work described in this study concerns the synthesis of emulsifiers prepared by chemical modification of polymers with ozone. This reaction produces the formation of peroxides which are then used to initiate the grafting of comonomers. According to this method, we obtain graft copolymers usable as emulsifiers in the elaboration of polymer blends. Those graft copolymers prepared according to this method improve mechanical performances of polymer blends. 相似文献
15.
Goerg H. Michler 《Macromolecular Symposia》1990,38(1):195-204
High-voltage electron microscopy was used to study the micromechanical processes of deformation directly on thin deformed samples of rubber-modified, high-impact polymers. In these polymers the microprocesses are closely connected with the initiation and formation of crazes. Craze formation with its effects on the fracture toughness are discussed in dependence on several important morphological factors, particularly on the rubber volume content, particle diameter, and particle diameter distribution. 相似文献
16.
Polyaniline (PANI) doped with different dopants (HCl, dodecyl benzene sulfonic acid, (+)‐Camphor‐10 sulfonic acid, dinonyl naphthalene disulfonic acid) was synthesized by chemical oxidation method. The FTIR studies indicated that the back bone structure of doped PANI was similar. Thermal stability was evaluated in nitrogen atmosphere by dynamic thermogravimetry and PANI‐HCl sample showed minimum weight loss below 400°C. The electrical conductivity of PANI was not affected by the structure of dopants. The microwave absorption studies of several polymers blends containing PANI‐HCl and/or carbon black were also carried out by using wave guide technique. 相似文献
17.
Jin Wen WANG Yi Yuan PENG Cheng Xue ZHAO* Department of Chemistry Shanghai Jiaotong University Shanghai Department of Chemistry Jiangxi Normal University Nanchang 《中国化学快报》2002,13(8)
Because the solvent dependency of aN, g factors and line widths of some bulky and stable di-t-alkyl nitroxides1, ESR has been proved to be a useful tool in searching for the nature of medium effects ( solvation ) to chemical reactivity. A large number of fluorinated nitroxides with a wide variety of structures have been generated and subjected to extensive studies in our laboratory2. Amongst, t-butyl perfluoroalkyl nitroxides, much less hindered, with noβ-H atoms, have been employed as sp… 相似文献
18.
《Magnetic resonance in chemistry : MRC》2003,41(7):481-488
An electron spin resonance (ESR) spin probe study was performed on 1 : 1 by weight poly(acrylic acid) (PAA)/poly(ethylene oxide) (PEO) complex over the 100–450 K temperature range with a series of tetramethylpiperidyloxy‐based spin probes. Measurements of the parameters T5mT, Ta and Td demonstrated the effects of probe size and the strength of hydrogen bonding. The probes in the series Tempone, Tempo, Tempol and Tamine (respectively 4‐oxo‐, unsubstituted, 4‐hydroxy‐ and 4‐amino‐2,2,6,6,‐tetramethylpiperidine ‐1‐oxyl) displayed noticeable increases in the hydrogen‐bonding effect, as indicated by Ta and Td. These increases correlated with increasing hydrogen bond acceptor strength. On the other hand, as the probe size became larger, T5mT gradually increased due to the free volume decrease. These effects were analyzed using the established theoretical relationship of T5mT to probe volume expressed by f. Meanwhile, in order to investigate the effect of polymer matrix rigidity, a similar study was performed with a nitroxide spin probe, 2,2,6,6‐tetramethyl‐1‐piperidine‐1‐oxyl (Tempo), on PAA/PEO complexes of different weight compositions. The quantitative fast motion fraction in the composite ESR spectrum was calculated. The influence of changes in the composition of PAA on the molecular mobility was characterized by changes of the spectral parameters and τc. The molecular mobility was shown to diminish with increasing content of PAA in PAA/PEO blends duo to the restriction of the polymer matrix rigidity increase. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
19.
20.
The purpose of this work is to describe the application of new electron microscopy techniques to the study of polymer blends with very fine dispersion of phases (miscible blends). Blends of PVC with PMMA, PCL, POM and SAN were prepared by high temperature mixing on a two roll mill, or by solvent casting. Thin sections (or cast films) were investigated in the scanning transmission electron microscope and small phases were identified in most blends. The contrast was enhanced by electronic combination of bright and dark field signals, by an irradiation and staining technique and by differential mass loss. The specimens were further characterized by measurement of mass loss, resulting from electron beam damage. The non linear changes in the mass loss rate with concentration were interpreted as being influenced by partial solubility and molecular interactions. 相似文献