首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Novel donor–acceptor dyads containing [2.2]- and [3.3]paracyclophane (PCP) as the bridging moiety were synthesized and used to effectively fabricate dye-sensitized hydrogen production systems. All the prepared compounds had a phenothiazine and a cyanoacrylic acid/pyridinyl acrylonitrile moiety acting as an electron donor and acceptor, respectively. Although cyclic voltammetry measurements showed similar electron-donating properties among all the synthesized dyads, the lowest absorption energy of the [2.2]PCP moiety was lower than that of the [3.3]PCP one; this was due to its shorter distance between benzene rings, which could effectively drive the charge transfer between the donor and acceptor chromophores. Under visible light (>395 nm), a dyad-loaded photocatalyst in a 0.5 M aqueous glycerol solution generated detectable hydrogen gases. The optimal turnover number and photocurrent order exhibited the same trend as the hydrogen production rate since the suggested number of excited photons played a critical role in hydrogen production.  相似文献   

2.
Density Functional theoretical calculations confirm the experimental observation that the low-temperature photolysis of (TPP)Fe(NO)(NO2) (as a KBr pellet) results in the generation of linkage isomers involving the axial NO and NO2 groups and suggest the possible formation of the double linkage isomer (TPP)Fe(ON)(ONO). The energy difference between the ground state (porphine)Fe(NO)(NO2) and the double-linkage isomer (porphine)Fe(ON)(ONO) is 1.57 eV, which is comparable to the 1.59 eV calculated previously for the nitrosyl-to-isonitrosyl linkage isomerism in the five-coordinate (porphine)Fe(NO) analogue.  相似文献   

3.
Pure organic materials with intrinsic room‐temperature phosphorescence typically rely on heavy atoms or heteroatoms. Two different strategies towards constructing organic room‐temperature phosphorescence (RTP) species based upon the through‐space charge transfer (TSCT) unit of [2.2]paracyclophane (PCP) were demonstrated. Materials with bromine atoms, PCP‐BrCz and PPCP‐BrCz, exhibit RTP lifetime of around 100 ms. Modulating the PCP core with non‐halogen‐containing electron‐withdrawing units, PCP‐TNTCz and PCP‐PyCNCz, successfully elongate the RTP lifetime to 313.59 and 528.00 ms, respectively, the afterglow of which is visible for several seconds under ambient conditions. The PCP‐TNTCz and PCP‐PyCNCz enantiomers display excellent circular polarized luminescence with dissymmetry factors as high as ?1.2×10?2 in toluene solutions, and decent RTP lifetime of around 300 ms for PCP‐TNTCz enantiomers in crystalline state.  相似文献   

4.
The synthesis of an unprecedented, π-extended hexabenzocorene (HBC)-based diaza[7]helicene is presented. The target compound was synthesized by an ortho-fusion of two naphthalene diimide (NDI) units to a HBC-skeleton. A combination of Diels–Alder and Scholl-type oxidation reactions involving a symmetric di-NDI-tolane precursor were crucial for the very selective formation of the helical superstructure via a hexaphenyl-benzene (HPB) derivative. The formation of the diaza[7]helicene moiety in the final Scholl oxidation is favoured, affording the symmetric π-extended helicene as the major product as a pair of enantiomers. The separation of the enantiomers was successfully accomplished by HPLC involving a chiral stationary phase. The absolute configuration of the enantiomers was assigned by comparison of circular dichroism spectra with quantum mechanical calculations.  相似文献   

5.
[2.2]Paracyclophane‐based through‐space conjugated oligomers and polymers were prepared, in which poly(p‐arylene–ethynylene) (PAE) units were partially π‐stacked and layered, and their properties in the ground state and excited state were investigated in detail. Electronic interactions among PAE units were effective through at least ten units in the ground state. Photoexcited energy transfer occurred from the stacked PAE units to the end‐capping PAE moieties. The electrical conductivity of the polymers was estimated using the flash‐photolysis time‐resolved microwave conductivity (FP‐TRMC) method and investigated together with time‐dependent density functional theory (TD‐DFT) calculations, showing that intramolecular charge carrier mobility through the stacked PAE units was a few tens of percentage larger than through the twisted PAE units.  相似文献   

6.
A critical component of the biological activity of NO and nitrite involves their coordination to the iron center in heme proteins. Irradiation (330 < lambda < 500 nm) of the nitrosyl-nitro compound (TPP)Fe(NO)(NO(2)) (TPP = tetraphenylporphyrinato dianion) at 11 K results in changes in the IR spectrum associated with both nitro-to-nitrito and nitrosyl-to-isonitrosyl linkage isomerism. Only the nitro-to-nitrito linkage isomer is obtained at 200 K, indicating that the isonitrosyl linkage isomer is less stable than the nitrito linkage isomer. DFT calculations reveal two ground-state conformations of (porphine)Fe(NO)(NO(2)) that differ in the relative axial ligand orientations (i.e., GS parallel and GS perpendicular). In both conformations, the FeNO group is bent (156.4 degrees for GS parallel, 159.8 degrees for GS perpendicular) for this formally {FeNO}(6) compound. Three conformations of the nitrosyl-nitrito isomer (porphine)Fe(NO)(ONO) (MSa parallel, MSa perpendicular, and MSa(L)) and two conformations of the isonitrosyl-nitro isomer (porphine)Fe(ON)(NO(2)) (MSb parallel and MSb perpendicular) are identified, as are three conformations of the double-linkage isomer (porphine)Fe(ON)(ONO) (MSc parallel, MSc perpendicular, MSc(L)). Only 2 of the 10 optimized geometries contain near-linear FeNO (MSa(L)) and FeON (MSc(L)) bonds. The energies of the ground-state and isomeric structures increase in the order GS < MSa < MSb < MSc. Vibrational frequencies for all of the linkage isomers have been calculated, and the theoretical gas-phase absorption spectrum of (porphine)Fe(NO)(NO(2)) has been analyzed to obtain information on the electronic transitions responsible for the linkage isomerization. Comparison of the experimental and theoretical IR spectra does not provide evidence for the existence of a double linkage isomer of (TPP)Fe(NO)(NO(2)).  相似文献   

7.
Treatment of GeCl2(dioxane) with Li2(TPP)(OEt2)2 (TPP = tetraphenylporphyrin) in THF yields Ge(TPP), the first free Ge(II) porphyrin complex. In pyridine Ge(TPP) is converted to Ge(TPP)(py)2, an antiaromatic Ge(IV) complex, whereas in benzene the reaction is reversed, and pyridine dissociates from Ge(TPP)(py)2 to form Ge(TPP). That reversible reaction represents an unusual, if not unique, example of an oxidation-state change in a metal induced by coordination of a dative ligand. UV-vis and 1H NMR spectroscopy show that Ge(TPP) is an aromatic Ge(II) porphyrin complex, while the 1H NMR spectrum of Ge(TPP)(py)2 clearly indicates the presence of a strong paratropic ring current, characteristic of an antiaromatic compound. Both Ge(TPP) and Ge(TPP)(py)2 have been crystallographically characterized, and the antiaromaticity of Ge(TPP)(py)2 leads to alternating short and long C-C bonds along the 20-carbon periphery of its porphine ring system. Coordination of pyridine to Ge(TPP) greatly increases its reducing ability: the Ge(TPP)0/2+ redox potential is about +0.2 V, while the Ge(TPP)(py)2(0/+) redox potential is -1.24 V (both vs. ferrocene). The equilibrium constant of the reaction Ge(TPP) + 2 py = Ge(TPP)(py)2 in C6D6 is 22 M-2. The germanium complex of the more electron-withdrawing tetrakis[3,5-bis(trifluoromethyl)phenyl]porphyrin, Ge(TArFP), and its pyridine adduct Ge(TArFP)(py)2 were synthesized. The equilibrium constant of the reaction Ge(TArFP) + 2 py = Ge(TArFP)(py)2 in C6F6/C6D6 is 2.3 x 10(4) M-2. Density functional theory calculations are consistent with the experimental observation that M(TPP)(py)2 formation from M(TPP) and pyridine is most favorable for M=Si, borderline for Ge, and unfavorable for Sn.  相似文献   

8.
A series of oligothiophenes that incorporate cyclopenta[c]thiophene‐based units bearing spiro‐substituted dialkylfluorene was synthesized. Photophysical measurements indicated that there was no interruption in the conjugation along the oligothiophene backbones, irrespective of the number or position of this unit. Electrochemical measurements showed that the thiophene 7‐mers and 11‐mer exhibit reversible multi‐oxidation waves. The formation of cationic species was clearly observed from UV/Vis/NIR measurements. Furthermore, the UV/Vis/NIR spectra at 223 K under one‐electron oxidation conditions revealed that the unsubstituted thiophene or bithiophene units remained in the absence of intermolecular π–π interactions, whereas the formation of π‐dimeric species was observed for the thiophene 7‐mer containing an unsubstituted terthiophene ( U3 ) unit. Theoretical calculations indicated that the combination of the U3 unit and the all‐trans conformation decreased the intermolecular steric repulsion between the fused cyclopentene ring and its facing thiophene, which may contribute to the formation of the dimeric structure.  相似文献   

9.
[2.2]Paracyclophane-based through-space conjugated oligomers and polymers were prepared, in which poly(p-arylene-ethynylene) (PAE) units were partially π-stacked and layered, and their properties in the ground state and excited state were investigated in detail. Electronic interactions among PAE units were effective through at least ten units in the ground state. Photoexcited energy transfer occurred from the stacked PAE units to the end-capping PAE moieties. The electrical conductivity of the polymers was estimated using the flash-photolysis time-resolved microwave conductivity (FP-TRMC) method and investigated together with time-dependent density functional theory (TD-DFT) calculations, showing that intramolecular charge carrier mobility through the stacked PAE units was a few tens of percentage larger than through the twisted PAE units.  相似文献   

10.
The synthesis of three- and four-layered [3.3]paracyclophanes ([3.3]PCPs) 3-5 has been accomplished by utilizing the (p-ethylbenzenesulfonyl)methyl isocyanide (EbsMIC) method. The structures of the three- to four-layered [3.3]PCPs 3- 5 and their diones 8, 10, and 11 have been elucidated based on the (1)H NMR spectra and finally by X-ray structural analysis. In the three-layered [3.3]PCP-dione 8, the trimethylene bridges of the [3.3]PCP unit assume a chair conformation similar to that of 2, while the [3.3]PCP-2,11-dione unit assumes a boat conformation different from that of [3.3]PCP-dione 1 with a chair conformation. On the other hand, the two [3.3]PCP units in three-layered [3.3]PCP 3 both assume a boat conformation. In the four-layered [3.3]PCP-dione 10, the two outer [3.3]PCP units assume a boat conformation while the inner dione unit has a chair conformation. The trimethylene bridges in the four-layered [3.3]PCP 4 are highly disordered even at -150 degrees C. All the outer benzene rings are distorted into a boat form while the inner ones are distorted into a twist form. In the electronic spectra, bathochromic shift and hyperchromic effect are observed, but the magnitude decreases with an increase in the number of layers and the spectra become structureless. In the charge-transfer (CT) bands of the three- to four-layered [3.3]PCPs 3- 5 with tetracyanoethylene (TCNE), two absorption maxima (lambda(max)) are observed. The effect of an increase in the layers becomes significant, and the changes in the longest wavelength lambda(max) values from two to three and three to four are ca. 60 and 50 nm, respectively. By comparison of the stereoisomeric four-layered [3.3]PCPs 4 (meso) and 5 (racemic), the helical arrangement of the trimethylene bridges of 5 shows a more efficient transannular pi-electronic interaction. In the three- to four-layered [3.3]PCP-diones, a magnitude of the CT interaction almost comparable to that of [3.3]PCP 2 was observed, and this indicates that the -CH(2)COCH(2)- bridges inhibit the CT interaction and that this tendency is supported by the calculated HOMO energy levels and observed oxidation potentials. Three- and four-layered [3.3]PCPs 3- 5 show reversible redox processes, and 4 and 5 show an electron-donating ability almost comparable to that of [3 6]CP. Very good correlation between the lambda(max) of the CT bands with TCNE and the oxidation potentials is observed.  相似文献   

11.
Piperonylidinyl‐4‐[2.2]paracyclophanylamine 1 reacted with some electron π‐deficients via charge‐transfer complexation and afforded amino derivatives of [2.2[paracyclophane 2–9 . Transannular electronic interaction existing in a cyclophane molecule plays an essential role for product formation.  相似文献   

12.
Novel conjugated polymers composed of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]pyrazine or dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2‐d]imidazole units are synthesized by Stille polycondensation. The resulting polymers display a longer wavelength absorption and well‐defined redox activities. The effective intramolecular charge‐transfer and energy levels of all polymers are elucidated by computational calculations. Bulk‐heterojunction solar cells based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) as an n‐type semiconductor are fabricated, and their photovoltaic performances are for the first time evaluated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1067–1075  相似文献   

13.
We use quantitative experimental and theoretical approaches to characterize the vibrational dynamics of the Fe atom in porphyrins designed to model heme protein active sites. Nuclear resonance vibrational spectroscopy (NRVS) yields frequencies, amplitudes, and directions for 57Fe vibrations in a series of ferrous nitrosyl porphyrins, which provide a benchmark for evaluation of quantum chemical vibrational calculations. Detailed normal mode predictions result from DFT calculations on ferrous nitrosyl tetraphenylporphyrin Fe(TPP)(NO), its cation [Fe(TPP)(NO)]+, and ferrous nitrosyl porphine Fe(P)(NO). Differing functionals lead to significant variability in the predicted Fe-NO bond length and frequency for Fe(TPP)(NO). Otherwise, quantitative comparison of calculated and measured Fe dynamics on an absolute scale reveals good overall agreement, suggesting that DFT calculations provide a reliable guide to the character of observed Fe vibrational modes. These include a series of modes involving Fe motion in the plane of the porphyrin, which are rarely identified using infrared and Raman spectroscopies. The NO binding geometry breaks the four-fold symmetry of the Fe environment, and the resulting frequency splittings of the in-plane modes predicted for Fe(TPP)(NO) agree with observations. In contrast to expectations of a simple three-body model, mode energy remains localized on the FeNO fragment for only two modes, an N-O stretch and a mode with mixed Fe-NO stretch and FeNO bend character. Bending of the FeNO unit also contributes to several of the in-plane modes, but no primary FeNO bending mode is identified for Fe(TPP)(NO). Vibrations associated with hindered rotation of the NO and heme doming are predicted at low frequencies, where Fe motion perpendicular to the heme is identified experimentally at 73 and 128 cm-1. Identification of the latter two modes is a crucial first step toward quantifying the reactive energetics of Fe porphyrins and heme proteins.  相似文献   

14.
[2.2]Paracyclophane (PCP) is a prevalent scaffold that is widely utilized in asymmetric synthesis, π‐stacked polymers, energy materials, and functional parylene coatings that finds broad applications in bio‐ and materials science. In the last few years, [2.2]paracyclophane chemistry has progressed tremendously, enabling the fine‐tuning of its structural and functional properties. This Minireview highlights the most important recent synthetic developments in the selective functionalization of PCP that govern distinct features of planar chirality as well as chiroptical and optoelectronic properties. Special focus is given to the function‐inspired design of [2.2]paracyclophane‐based π‐stacked conjugated materials by transition‐metal‐catalyzed cross‐coupling reactions. Current synthetic challenges, limitations, as well as future research directions and new avenues for advancing cyclophane chemistry are also summarized.  相似文献   

15.
研究了三苯基磷(TPP)引发丙烯腈(AN)光聚合。测定了光聚合速率 R_p与单体浓度、引发剂浓度的关系为:R_p=K[AN]~(1.49)[TPP]~(0.47)以及光聚合反应活化能E_α=6.16千卡/摩尔,从激发态电荷转移机制,讨论了引发聚合机理。  相似文献   

16.
Two different crystals (A and B) were used to structurally characterize trans‐[PtCl2(PPh3)2] and to study random and systematic errors in derived parameters. The compound is isomorphous with trans‐[PdCl2(PPh3)2] and with one of the polymorphs of trans‐[PtMeCl(PPh3)2] reported previously. Half‐normal probability plot analyses based on A and B show realistic s.u.'s and negligible systematic errors. R.m.s. calculations give very good agreement between A and B, 0.0088 Å. Important geometrical parameters are Pt—P = 2.3163 (11) Å, Pt—Cl = 2.2997 (11) Å, P—Pt—Cl = 87.88 (4) and 92.12 (4)°. Half‐normal probability plots and r.m.s. calculations were also used to compare the title compound with the palladium analogue, showing small systematic differences between the compounds. The torsion angles around the Pt—P bond were found to be very similar to those reported for isomorphous complexes, as well as to the torsion angles around the Pt—As bond in trans‐[PtCl2(AsPh3)2]. The NMR coupling constants for the title compound are similar to Pt—P coupling constants reported for analogous trans complexes.  相似文献   

17.
Reported here is the synthesis and self-assembly characterization of [n.n]paracyclophanes ( [n.n]pCps , n=2, 3) equipped with anilide hydrogen bonding units. These molecules differ from previous self-assembling [n.n]paracyclophanes ( [n.n]pCps ) in the connectivity of their amide hydrogen bonding units (C-centered/carboxamide vs. N-centered/anilide). This subtle change results in a ≈30-fold increase in the elongation constant for the [2.2]pCp -4,7,12,15-tetraanilide ( [2.2]pCpNTA ) compared to previously reported [2.2]pCp -4,7,12,15-tetracarboxamide ( [2.2]pCpTA ), and a ≈300-fold increase in the elongation constant for the [3.3]pCp -5,8,14,17-tetraanilide ( [3.3]pCpNTA ) compared to previously reported [3.3]pCp -5,8,14,17-tetracarboxamide ( [3.3]pCpTA ). The [n.n]pCpNTA monomers also represent the reversal of a previously reported trend in solution-phase assembly strength when comparing [2.2]pCpTA and [3.3]pCpTA monomers. The origins of the assembly differences are geometric changes in the association between [n.n]pCpNTA monomers—revealed by computations and X-ray crystallography—resulting in a more favorable slipped stacking of the intermolecular π-surfaces ( [n.n]pCpNTA vs. [n.n]pCpTA ), and a more complementary H-bonding geometry ( [3.3]pCpNTA vs. [2.2]pCpNTA ).  相似文献   

18.
由吡咯和葡萄糖取代苯甲醛直接缩合制备了两种葡萄糖取代卟吩,四(邻位乙酰葡萄糖氧代苯基)卟吩和四(间位乙酰葡萄糖氧代苯基)卟吩,它们进一步金属化合成了四种葡萄糖金属卟啉,氯化四(邻位乙酰葡萄糖氧代苯基)卟吩合铁、氯化四(间位乙酰葡萄糖氧代苯基)卟吩合铁、氯化四(邻位四乙酰葡萄糖氧代苯基)卟吩合锰和氯化四(间位乙酰葡萄糖氧代苯基)卟吩合锰。它们的结构由紫外-可见光谱、元素分析和核磁共振证实。研究了这些葡萄糖取代金属卟啉对亚碘酰苯常温常压下氧化异戊烷反应的选择性催化作用。研究表明,糖基金属卟啉催化异戊烷端基碳氢键的氧化,对一级碳氢键表现出专一性催化作用。非糖基金属卟啉催化异戊烷二级和三级碳氢键的氧化。与非糖基金属卟啉比较,糖基金属卟啉对烷烃羟基化反应的催化行为更接近细胞色素P-450单充氧酶。  相似文献   

19.
1,9-Dithia[2.2]paracyclophane-1,1,9,9-tetroxide ( 3 ) was synthesized as white needles in a high yield from 1,9-dithia[2.2]paracyclophane ( 2 ) by oxidation with m-chloroperbenzoic acid, and its molecular structure was determined with single-crystal X-ray diffraction analysis. Vapor deposition polymerizations of 2 and 3 gave amorphous and brittle polymer films along with considerable amounts of nonpolymeric byproducts. A polymer film from 2 was a copolymer of p-(phenylene-methylenesulfide) with p-(phenylene-methylene) units, and a polymer film from 3 was a homopolymer of p-(phenylene-methylene) units with head-to-tail, head-to-head, and tail-to-tail placements. The elimination of sulfur atoms in 2 and sulfone units in 3 took place during their pyrolysis reactions. Plausible mechanisms for vapor deposition polymerizations of both cyclophanes are proposed. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1892–1900, 2001  相似文献   

20.
Helicenes and extended helical π-conjugated compounds have been widely studied, but most of the systems contain only aromatic benzene or heterocyclic rings, showing local aromatic character. Herein, new S-shaped double [6]helicene 1 , which has two embedded para-quinodimethane (p-QDM) units, is reported. Due to the existence of a proaromatic quinoidal substructure, it has open-shell diradical character. Its model compound, C-shaped single [6]helicene 2 containing one p-QDM unit, was also synthesized and compared. Their ground-state structures and electronic properties were systematically studied by a combination of various experimental methods assisted by theoretical calculations. Compound 1 has a double-helical structure in the crystal, with the two terminal [6]helicene units bent in opposite directions (i.e., anti form). However, an anti/syn isomerization process with a moderate interconversion energy barrier was observed on the NMR timescale. Compound 1 shows amphoteric redox behavior. It also exhibits open-shell diradical character (y0=12.1 %) and a small singlet–triplet gap. On the other hand, compound 2 has a typical closed-shell nature. The dication and dianion of 1 also show open-shell diradical character. The dianion of 2 and the tetraanion of 1 exhibit similar electronic structures to their respective isoelectronic structures, that is, [6]helicene and a double [6]helicene. This work provides some insights into the design and synthesis of stable helical π systems with open-shell diradical character and magnetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号