首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two monometayl- and four dimethyl-triazolocoumarin isomers were characterized by their electron impact mass spectra and by low-energy collision experiments performed on molecular ions M+˙ and other fragment ions with an ion-trap mass spectrometer. High-energy collision-activated dissociation measurements were performed on the protonated [M + H]+ and deprotonated [M ? H]? molecular ion obtained by fast atom bombardment and M+˙ species produced by electron impact ionization on a double-focusing, reverse-geometry instrument. The data obtained allowed unequivocal structural identification of all the compounds investigated.  相似文献   

2.
3.
The N2 negative ion chemical ionization (NICI) mass spectra of aniline, aminonaphthalenes, aminobiphenyls and aminoanthracenes show an unexpected addition appearing at [M + 11]. This addition is also observed in the N2 positive chemical ionization (PCI) mass spectra. An ion at [M – 15]? is found in the NICI spectra of aminoaromatics such as aniline, 1- and 2-aminonaphthalene and 1- and 2-aminoanthracene. Ion formation was studied using labeled reagents, variation of ion source pressure and temperature and examination of ion chromatograms. These experiments indicate that the [M + 11], [M – 15] and [M + 11] ions result from the ionization of analytes altered by surface-assisted reactions. Experiments with 15N2, [15N] aniline, [2,3,4,5,6-2H5] aniline and [13C6] aniline show that the [M + 11] ion corresponds to [M + N – 3H]. The added nitrogen originates from the N2 buffer gas and the addition occurs with loss of one ring and two amino group hydrogens. Fragmentation patterns in the N2 PCI mass spectrum of aniline suggest that the neutral product of the surface-assisted reaction is 1,4-dicyanobuta-1,3-diene. Experiments with diamino-substituted aromatics show analogous reactions resulting in the formation of [M – 4H] ions for aromatics with ortho-amino groups. Experiments with methylsubstituted aminoaromatics indicate that unsubstituted sites ortho to the amino group facilitate nitrogen addition, and that methyl groups provide additional sites for nitrogen addition.  相似文献   

4.
5.
The collision-induced decompositions of the [M – H]? and [M + Li]+ ions of a few dinucleoside phenylphosphonates were studied using fast atom bombardment and linked scanning at constant B/E. Deprotonation takes place on the base or sugar moieties. The [M – H]? ion decomposes mainly by cleavage on either side of the phosphonate linkage, leading to the formation of mononucleotide fragment ions and also by cleavage of the basesugar bond. Rupture of the 3′-phosphonate bond is preferred. Unlike the normal charged nucleotides, these neutral nucleotides do not eliminate a neutral base from the [M – H]? ion. However, the mononucleotide fragment ions which can have the charge on the phosphorus oxygen eliminate neutral bases by charge-remote fragmentation. The 4,4′-dimethoxytrityl (DMT)-protected nucleotides show the additional fragmentation of loss of DMT. Li+ attachment can occur at several sites in the molecule. As observed for the [M – H]? ion, the major cleavage occurs on either side of the phosphonate bond in the fully deprotected nucleotides, cleavage of the ester bond on C(3′) being preferred. Cleavage of the 5′-phosphonate bond is not observed in the DMT-protected nucleotides. Many of the fragmentations observed can be explained as arising from charge-remote reactions.  相似文献   

6.
Studies of the genesis of the [M ? H]+ ion in flavanone and 2′-hydroxychalcone, performed with the aid of metastable decompositions and deuterium labelling, allow new structural notations to be postulated for the [M ? H]+ ions, which in turn provide evidence for the pathways in the [M ? H – ketene]+ fragmentation routes for these compounds.  相似文献   

7.
8.
The electron impact mass spectrometric behaviour of four 2-methyl-2-aryl- and two 2-methyl-2-alkyl-1,3-dithianes is described and discussed in detail, with the aid of exact mass measurements, linked scans and mass-analysed ion kinetic energy spectrometry. The mechanism of the primary HS2˙ loss, as well as those of the more unusual fragmentation pathways, are given.  相似文献   

9.
Methyl 2-oxocycIoalkane carboxylate structures are proposed lor the [M ? MeOH] ions from dimethyl adipate, pimelate, suberate and azelate. This proposal is based on a comparison of the metastable ion mass spectra and the kinetic energy releases for the major fragmentation reaction of these species with the same data for the molecular ions of authentic cyclic β-keto esters. The mass spectra of α,α,α′,α′-d4-pimelic acid and its dimethyl ester indicate that the α-hydrogens are involved only to a minor extent in the formation of [M ? ROH] and [M ? 2ROH] ions, while these α-hydrogens are involved almost exclusively in the loss of ROH from the [M ? RO˙]+ ions (R = H or CH3). The molecules XCO(CH2)7COOMe (X = OH, Cl) form abundant ions in their mass spectra with the same structure as the [M ? 2MeOH] ions from dimethyl azelate.  相似文献   

10.
11.
12.
The methane and isobutane chemical ionization mass spectra of alicyclic substituted 2-aryl-1,3-dithianes were examined by gas chromatography mass spectrometry. The protonated molecular ion was found to be of low abundance in the methane spectra, while a protonated cyclic sulfide cation (m/z 107) appeared as the base peak. A protonated molecular ion was the base peak when isobutane was used as the reagent gas. Electron impact mass spectra displayed weak molecular ions and were characterized by the m/z 106 fragment.  相似文献   

13.
14.
15.
The competitive formation of molecular ions M and protonated molecules [M + H]+ under fast atom bombardment (FAB) conditions was examined using various kinds of organic compounds. The use of protic/hydrophilic matrices such as thioglycerol and glycerol resulted in relatively large values of the peak intensity ratio I([M + H]+)/I(M) compared with the use of relatively aprotic/hydrophobic matrices such as m-nitrobenzyl alcohol and o-nitrophenyl octyl ether. The change of matrix from thiol-containing such as thioglycerol and dithiothreitol to alcoholic such as glycerol and pentamethylene glycol increased the I([M + H]+)/I(M) ratio. Furthermore, the change of matrix increased the peak intensity ratio of the doubly charged ion [M + 2H]2+ to [M + H]+ in the FAB mass spectra of angiotensin I and gramicidin S. The addition of acids to the matrix solution increased the I([M + H]+)/I(M) ratio, although such an effect did not always occur. The acetylation of simple aniline compounds markedly increased the I([M + H]+)/I(M) ratio. It was concluded from these results that the hydrogen bonding interaction between hydroxyl groups(s) of the matrix and basic site(s) of analyte molecules in solution acts advantageously as a quasi-preformed state for [M + H]+ formation, and that the presence of significant proton acceptor(s) such as carbonyl group in analytes hinder the M formation which may generally occur under FAB conditions. The formation of M and [M + H]+ ions seemed to occur competitively, reflecting or according to the interaction or solvation states between the analyte and matrix molecules in solution and the structural characteristics of the analytes.  相似文献   

16.
The closo‐dodecaborate [B12H12]2? is degraded at room temperature by oxygen in an acidic aqueous solution in the course of several weeks to give B(OH)3. The degradation is induced by Ag2+ ions, generated from Ag+ by the action of H2S2O8. Oxa‐nido‐dodecaborate(1?) is an intermediate anion, that can be separated from the reaction mixture as [NBzlEt3][OB11H12] after five days in a yield of 18 %. The action of FeCl3 on the closo‐undecaborate [B11H11]2? in an aqueous solution gives either [B22H22]2? (by fusion) or nido‐B11H13(OH)? (by protonation and hydration), depending on the concentration of FeCl3. In acetonitrile, however, [B11H11]2? is transformed into [OB11H12]? by Fe3+ and oxygen. The radical anions [B12H12] ˙ ? and [B11H11] ˙ ? are assumed to be the primary products of the oxidation with the one‐electron oxidants Ag2+ and Fe3+, respectively. These radical anions are subsequently transformed into [OB11H12]? by oxygen. The crystal structure analysis shows that the structure of [OB11H12]? is derived from the hypothetical closo‐oxaborane OB12H12 by removal of the B3 vertex, leaving a non‐planar pentagonal aperture with a three‐coordinate O vertex, as predicted by NMR spectra and theory.  相似文献   

17.
The dish-topped metastable peak for the fragmentation [C3H7]+ → [allyl]+ + H2 is generated by the threshold fragmentation. The fraction of the reverse activation energy which is partitioned as translational energy of the products is 0.9 ± 0.1. It is proposed that a similar partitioning coefficient applies to the excess internal energy above threshold.  相似文献   

18.
19.
20.
Unusual ionization behavior was observed with novel antineoplastic curcumin analogues during the positive ion mode of matrix‐assisted laser desorption ionization (MALDI) and dopant‐free atmospheric pressure photoionization (APPI). The tested compounds produced an unusual significant peak designated as [M ? H]+ ion along with the expected [M + H]+ species. In contrast, electrospray ionization, atmospheric pressure chemical ionization and the dopant‐mediated APPI (dopant‐APPI) showed only the expected [M + H]+ peak. The [M ? H]+ ion was detected with all evaluated curcumin analogues including phosphoramidates, secondary amines, amides and mixed amines/amides. Our experiments revealed that photon energy triggers the ionization of the curcumin analogues even in the absence of any ionization enhancer such as matrix, solvent or dopant. The possible mechanisms for the formation of both [M ? H]+ and [M + H]+ ions are discussed in this paper. In particular, three proposed mechanisms for the formation of [M ? H]+ were evaluated. The first mechanism involves the loss of H2 from the protonated [M + H]+ species. The other two mechanisms include hydrogen transfer from the analyte radical cation or hydride abstraction from the neutral analyte molecule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号