首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The irredundant Ramsey number s(m, n) is the smallest p such that for every graph G with p vertices, either G contains an n-element irredundant set or its complement G contains an m-element irredundant set. Cockayne, Hattingh, and Mynhardt have given a computer-assisted proof that s(3, 7) = 18. The purpose of this paper is to give a self-contained proof of this result. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The irredundant Ramsey number s(m, n) is the smallest p such that in every two-coloring of the edges of Kp using colors red (R) and blue (B), either the blue graph contains an m-element irredundant set or the red graph contains an n-element irredundant set. We develop techniques to obtain upper bounds for irredundant Ramsey numbers of the form s(3, n) and prove that 18 ≤ s(3,7) ≤ 19.  相似文献   

3.
For any graph G, let i(G) and μ;(G) denote the smallest number of vertices in a maximal independent set and maximal clique, respectively. For positive integers m and n, the lower Ramsey number s(m, n) is the largest integer p so that every graph of order p has i(G) ≤ m or μ;(G) ≤ n. In this paper we give several new lower bounds for s (m, n) as well as determine precisely the values s(1, n).  相似文献   

4.
《Quaestiones Mathematicae》2013,36(4):571-589
Abstract

The mixed irredundant Ramsey number t(m, n) is the smallest natural number t such that if the edges of the complete graph Kt on t vertices are arbitrarily bi-coloured using the colours blue and red, then necessarily either the subgraph induced by the blue edges has an irredundant set of cardinality m or the subgraph induced by the red edges has an independent set of cardinality n (or both). Previously it was known that 18 ≤ t(3, 7) ≤ 22 and 18 ≤ t(3, 8) ≤ 28. In this paper we prove that t(3, 7) = 18 and t(3, 8) = 22.  相似文献   

5.
A graphG withn vertices has propertyp(r, s) ifG contains a path of lengthr and if every such path is contained in a circuit of lengths. G. A. Dirac and C. Thomassen [Math. Ann.203 (1973), 65–75] determined graphs with propertyp(r,r+1). We determine the least number of edges in a graphG in order to insure thatG has propertyp(r,s), we determine the least number of edges possible in a connected graph with propertyp(r,s) forr=1 and alls, forr=k ands=k+2 whenk=2, 3, 4, and we give bounds in other cases. Some resulting extremal graphs are determined. We also consider a generalization of propertyp(2,s) in which it is required that each pair of edges is contained in a circuit of lengths. Some cases of this last property have been treated previously by U. S. R. Murty [inProof Techniques in Graph Theory, ed. F. Harary, Academic Press, New York, 1969, pp. 111–118].  相似文献   

6.
Pyaderkin  M. M. 《Mathematical Notes》2019,106(1-2):274-285

This paper considers the so-called distance graph G(n, r, s);its vertices can be identified with the r-element subsets of the set {1, 2,…,n}, and two vertices are joined by an edge if the size of the intersection of the corresponding subsets equals s. Note that, in the case s = 0, such graphs are known as Kneser graphs. These graphs are closely related to the Erd?s-Ko-Rado problem; they also play an important role in combinatorial geometry and coding theory.

We study properties of random subgraphs of the graph G(n, r, s) in the Erd?s-Rényi model, in which each edge is included in the subgraph with a certain fixed probability p independently of the other edges. It is known that if r > 2s + 1, then, for p = 1/2, the size of an independent set is asymptotically stable in the sense that the independence number of a random subgraph is asymptotically equal to that of the initial graph G(n, r, s). This gives rise to the question of how small p must be for asymptotic stability to cease. The main result of this paper is the answer to this question.

  相似文献   

7.
《Quaestiones Mathematicae》2013,36(3):319-331
Abstract

The irredundant Ramsey number s(m,n) is the smallest N such that in every red-blue colouring of the edges of KN , either the blue graph contains an m-element irredundant set or the red graph contains an n-element irredundant set. We prove an asymptotic lower bound for s(m, n).  相似文献   

8.
The main theorem of that paper is the following: let G be a graph of order n, of size at least (n2 - 3n + 6)/2. For any integers k, n1, n2,…,nk such that n = n1 + n2 +. + nk and ni ? 3, there exists a covering of the vertices of G by disjoint cycles (Ci) =l…k with |Ci| = ni, except when n = 6, n1 = 3, n2 = 3, and G is isomorphic to G1, the complement of G1 consisting of a C3 and a stable set of three vertices, or when n = 9, n1 = n2 = n3 = 3, and G is isomorphic to G2, the complement of G2 consisting of a complete graph on four vertices and a stable set of five vertices. We prove an analogous theorem for bipartite graphs: let G be a bipartite balanced graph of order 2n, of size at least n2 - n + 2. For any integers s, n1, n2,…,ns with ni ? 2 and n = n1 + n2 + ? + ns, there exists a covering of the vertices of G by s disjoint cycles Ci, with |Ci| = 2ni.  相似文献   

9.
 Let G be a planar graph of n vertices, v 1,…,v n , and let {p 1,…,p n } be a set of n points in the plane. We present an algorithm for constructing in O(n 2) time a planar embedding of G, where vertex v i is represented by point p i and each edge is represented by a polygonal curve with O(n) bends (internal vertices). This bound is asymptotically optimal in the worst case. In fact, if G is a planar graph containing at least m pairwise independent edges and the vertices of G are randomly assigned to points in convex position, then, almost surely, every planar embedding of G mapping vertices to their assigned points and edges to polygonal curves has at least m/20 edges represented by curves with at least m/403 bends. Received: May 24, 1999 Final version received: April 10, 2000  相似文献   

10.
A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a dominating set of cardinality at most 3n/8. In this paper we generalize Reed's result. We show that every graph G of order n with minimum degree at least 2 has a dominating set of cardinality at most (3n +IV21)/8, where V2 denotes the set of vertices of degree 2 in G. As an application of the above result, we show that for k ≥ 1, the k-restricted domination number rk (G, γ) ≤ (3n+5k)/8 for all graphs of order n with minimum degree at least 3.  相似文献   

11.
Let G be a 2-connected claw-free graph on n vertices, and let H be a subgraph of G. We prove that G has a cycle containing all vertices of H whenever α3(H) ≧ κ(G), where α3(H) denotes the maximum number of vertices of H that are pairwise at distance at least three in G, and κ(G) denotes the connectivity of G. This result is an analog of a result from the thesis of Fournier, and generalizes the result of Zhang that G is hamiltonian if the degree sum of any κ(G) + 1 pairwise nonadjacent vertices is at least n ? κ(G). © 1995 John Wiley & Sons, Inc.  相似文献   

12.
choice number of a graph G is the minimum integer k such that for every assignment of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). It is shown that the choice number of the random graph G(n, p(n)) is almost surely whenever . A related result for pseudo-random graphs is proved as well. By a special case of this result, the choice number (as well as the chromatic number) of any graph on n vertices with minimum degree at least in which no two distinct vertices have more than common neighbors is at most . Received: October 13, 1997  相似文献   

13.
Let G1, G2,. …, Gt be an arbitrary t-edge coloring of Kn, where for each i ∈ {1,2, …, t}, Gi is the spanning subgraph of Kn consisting of all edges colored with the ith color. The irredundant Ramsey number s(q1, q2, …, qt) is defined as the smallest integer n such that for any t-edge coloring of Kn, i has an irredundant set of size qi for at least one i ∈ {1,2, …,t}. It is proved that s(3,3,3) = 13, a result that improves the known bounds 12 ≤ s(3,3,3) ≤ 14.  相似文献   

14.
A necessary and sufficient condition for an open irredundant set of vertices of a graph to be maximal is obtained. This result is used to show that the smallest cardinality amongst the maximal open irredundant sets in an n-vertex isolate-free graph with maximum degree Δ is at least n(3Δ−1)/(2Δ3−5Δ2+8Δ−1) for Δ≥5, n/8 for Δ=4 and 2n/11 for Δ=3. The bounds are the best possible.  相似文献   

15.
Let G be a simple connected graph with n vertices and n edges which we call a unicyclic graph. In this paper, we first investigate the least eigenvalue λn(G), then we present two sharp bounds on the spread s(G) of G.  相似文献   

16.
If G is a graph with p vertices and at least one edge, we set φ (G) = m n max |f(u) ? f(v)|, where the maximum is taken over all edges uv and the minimum over all one-to-one mappings f : V(G) → {1, 2, …, p}: V(G) denotes the set of vertices of G.Pn will denote a path of length n whose vertices are integers 1, 2, …, n with i adjacent to j if and only if |i ? j| = 1. Pm × Pn will denote a graph whose vertices are elements of {1, 2, …, m} × {1, 2, …, n} and in which (i, j), (r, s) are adjacent whenever either i = r and |j ? s| = 1 or j = s and |i ? r| = 1.Theorem.If max(m, n) ? 2, thenφ(Pm × Pn) = min(m, n).  相似文献   

17.
A labeling of graph G with a condition at distance two is an integer labeling of V(G) such that adjacent vertices have labels that differ by at least two, and vertices distance two apart have labels that differ by at least one. The lambda-number of G, λ(G), is the minimum span over all labelings of G with a condition at distance two. Let G(n, k) denote the set of all graphs with order n and lambda-number k. In this paper, we examine the sizes of graphs in G(n, k). We modify Chvàtal's result on non-hamiltonian graphs to obtain a formula for the minimum size of a graph in G(n, k), and we use an algorithmic approach to obtain a formula for the maximum size. Finally, we show that for any integer j between the maximum and minimum sizes there exists a graph with size j in G(n, k). © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Let G be a k-connected graph of order n. For an independent set c, let d(S) be the number of vertices adjacent to at least one vertex of S and > let i(S) be the number of vertices adjacent to at least |S| vertices of S. We prove that if there exists some s, 1 ≤ s ≤ k, such that ΣxiEX d(X\{Xi}) > s(n?1) – k[s/2] – i(X)[(s?1)/2] holds for every independetn set X ={x0, x1 ?xs} of s + 1 vertices, then G is hamiltonian. Several known results, including Fraisse's sufficient condition for hamiltonian graphs, are dervied as corollaries.  相似文献   

19.
Let O(G) denote the set of odd-degree vertices of a graph G. Let t ? N and let ??t denote the family of graphs G whose edge set has a partition. E(g) = E1 U E2 U … U Etsuch that O(G) = O(G[Ei]) (1 ? i ? t). This partition is associated with a double cycle cover of G. We show that if a graph G is at most 5 edges short of being 4-edge-connected, then exactly one of these holds: G ? ??3, G has at least one cut-edge, or G is contractible to the Petersen graph. We also improve a sufficient condition of Jaeger for G ? ??2p+1(p ? N).  相似文献   

20.
Let G(n, M) be a graph chosen at random from the family of all labelled graphs with n vertices and M(n) = 0.5n + s(n) edges, where s3(n)n?2→∞ but s(n) = o(n). We find the limit distribution of the length of shortest cycle contained in the largest component of G(n, M), as well as of the longest cycle outside it. We also describe the block structure of G(n, M) and derive from this result the limit probability that G(n, M) contains a cycle with a diagonal. Finally, we show that the probability tending to 1 as n-→∞ the length of the longest cycle in G(n, M) is of the order s2(n)/n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号