首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusion dynamics of 1-Butyl-3-methylimidazolium chloride ([BMIM]Cl) during coagulation process of cellulose filaments with H2O as non-solvent were investigated in detail. The diffusion coefficients of [BMIM]Cl was calculated based on the Fick’s second law of diffusion according to the experimental data. Several factors which affect the coagulation process including polymer concentration, concentration and temperature of coagulation bath were discussed respectively. It is found that the diffusion rate of [BMIM]Cl decreased with the increasing polymer content in the spinning solutions and the initial concentration of [BMIM]Cl in the coagulation bath, while the diffusion coefficients increased largely with the coagulation temperature becoming higher. The diffusion coefficients of [BMIM]Cl is relatively lower, in contrast with the conventional solvent in the solution spinning process, which is coordinate with the result of polyacrylonitrile [BMIM]Cl system by Zhang et al. (Polym Eng Sci 48(1):184–190, 2008). Compared with the diffusion process of N-methylmorpholine-N-oxide (NMMO) from cellulose filament, the diffusion coefficients of [BMIM]Cl is lower, which suggested a stronger coagulation and washing conditions should be taken to produce regenerated cellulose fiber with [BMIM]Cl as solvent.  相似文献   

2.
An investigation of the diffusion competition between solvent and nonsolvent in a coagulation bath is presented for the formation of a new cellulosic fiber by wet-spinning. The system consisted of the spinnable cellulose solution with a mixture of liquid ammonia/ammonia thiocynate as the solvent and low-molecular-weight alcohols as the nonsolvents. The diffusion competition between solvent and nonsolvent was quantitatively characterized in terms of their mass transfer rate differences. The measurements of this rate difference were performed on the model filament shaped from gelled cellulose solutions. Results revealed that an increase in molecular size of coagulant, bath temperature, and coagulant concentration in the bath enhanced preferential diffusion of solvent from cellulose solution. Fiber spinning experiments showed that a higher value of the initial modulus of the fiber was attained with a coagulation condition providing a lower value of mass transfer rate difference. The importance of mass transfer rate difference was also shown in the influence of the fiber cross-sectional shapes.  相似文献   

3.
Ammonia/ammonium thiocyanate (NH3/NH4SCN) is an excellent swelling agent and solvent for cellulose, even at a high degree of polymerization. Because polymorphic conversion in cellulose has been a long-standing, perplexing, troublesome problem, we have undertaken to study that mechanism. Solid state CP/MAS 13C-NMR and X-ray analysis proved to be very useful analytical techniques for the task. It appears that during temperature cycling, specific cellulosic inter- and intramolecular hydrogen-bonds are broken as polymorphic conversion proceeds sequentially from the polymorph I to III, and finally at total solvation to amorphous. This proceeds correspondingly via transformation of the polymorph conformations of CH2OH from trans-gauche, “tg,” to gauche-trans, “gt,” to gauche-gauche, “gg.” © 1994 John Wiley & Sons, Inc.  相似文献   

4.
An extensive study of the coagulation of cellulose from cellulose/ammonia/ammonium thiocyanate solutions is presented. The effect of major variables upon the coagulation process for cellulose solutions is reported. Microscopic observations of the moving boundary associated with the coagulation were performed on gelled cellulose solutions to determine the coagulation rate as a function of molecular volumes of coagulant, bath temperatures, bath compositions, and cellulose concentrations. The data were analyzed by means of a one-dimensional linear diffusion model based on Fick's law, thereby depicting the mechanism of the coagulation process, and obtaining the diffusion coefficients of mobile components involved in the coagulation.  相似文献   

5.
Adsorption and 15NH3 isotopic exchange was performed on dry macroreticular polystyrene ion exchanges crosslinked with varying amounts of divinylbenzene and partially neutralized by 14NH3. Data on pressure changes and mass spectrometric analyses of isotopic composition of the gaseous phase were used to calculate equilibrium distribution of 14NH3 and 15NH3 under various dislocation conditions. It was established that along with the exchange of 14NH3 to a gaseous phase, 15NH3 penetrates to the mass of ion exchanger. This is evidently due to the migration of ammonia among functional groups. It was found that by thermal desorption under reduced pressure ammonia is released only from functional groups located on the surface of ion exchanger.  相似文献   

6.
This qualitative study examines the response of the novel energetic material ammonium dinitramide (ADN), NH4N(NO2)2, to thermal stress under low heating rate conditions in a new experimental apparatus. It involved a combination of residual gas mass spectrometry and FTIR absorption spectroscopy of a thin cryogenic condensate film resulting from deposition of ADN pyrolysis products on a KCl window. The results of ADN pyrolysis were compared under similar conditions with the behavior of NH4NO3 and NH2NO2 (nitramide), which served as reference materials. NH4NO3 decomposes into HNO3 and NH3 at 182°C and is regenerated on the cold cryostat surface. HNO3 undergoes presumably heterogeneous loss to a minor extent such that the condensed film of NH4NO3 contains occluded NH3. Nitramide undergoes efficient heterogeneous decomposition to N2O and H2O even at ambient temperature so that pyrolysis experiments at higher temperatures were not possible. However, the presence of nitramide can be monitored by mass spectrometry at its molecular ion (m/? 62). ADN pyrolysis is dominated by decomposition into NH3 and HN(NO2)2 (HDN) in analogy to NH4NO3, with a maximum rate of decomposition under our conditions at approximately 155°C. The two vapor phase components regenerate ADN on the cold cryostat surface in addition to deposition of the pure acid HDN and H2O. Condensed phase HDN is found to be stable for indefinite periods of time at ambient temperature and vacuum conditions, whereas fast heterogeneous decomposition of HDN at higher temperature leads to N2O and HNO3. The HNO3 then undergoes fast (heterogeneous) decomposition in some experiments. Gas phase HDN also undergoes fast heterogeneous decomposition to NO and other products, probably on the internal surface (ca. 60°C) of the vacuum chamber before mass spectrometric detection. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The 13C-NMR chemical shifts of a cellulose with a DPw of 23 dissolved in the NH3/NH4SCN solvent system were found to be very similar to those of cellulose dissolved in DMSO (cellulose oligomers), in the LiCl/DMAC system and in the N-methylmorpholine N-oxide/DMSO system. It was concluded from this that cellulose does not react with the NH3/NH4SCN solvent. It was found, however, that glucose reacts with the solvent at C-1 to form β-D -glucopyranosy-lamine. Separation of this compound from the solvent resulted in another compound which was determined to be β,β-di-D -glucopyranosylamine. The compounds β-D -glucopyranosylamine, N-acetyl-2,3,4,6-tetra-O-acetyl-β-D -glucopyranosylamine, β,β-di-D -glucopyranosylamine, α,β-di-D -glucopyranosylamine, 2,3,4,6,2′,3′,4′,6′-octa-O-acetyl-α,β-di-D -glucopyranosylamine were all synthesized and the 13C-NMR chemical shifts of these compounds are reported. It was also found that for the low-DP cellulose sample which was used the reducing end group existed and had reacted with the solvent to form an amine at C-1.  相似文献   

8.
Our earlier work on the formation of particulate NH4NO3 in the NH3? O3 reaction at 25°C is extended to include air as a diluent and H2O vapor as an additive. More extensive data at different values of [NH3]/[O3]0 were obtained also, where [O3]0 is the initial O3 concentration. In our earlier work we concluded that NH4NO3 vapor was dissociated to NH3 + HNO3 and that the HNO3 was removed by diffusion to the walls with a rate coefficient kdiff = 0.4 min?1 or by condensation on the suspended particles. Particles were nucleated by 8 NH3? HNO3 pairs when their concentration product reached 5.8 × 1027 molec2/cm6 with a rate coefficient knucl of 6.2 × 10?224 cm45/min and removed by coagulation with a rate coefficient kcoag of 1.3 × 10?7 cm3/min. A corrected calculation modifies the number of pairs required to 6–7 with a correspondingly changed value of knucl. With the more extensive data of the present study the indications are that the vapor-phase NH4NO3 monomer is not dissociated and that its diffusion constant for loss to the walls varies between 0.3 and 0.9 min?1 for different reaction conditions. Nucleation occurs when the NH4NO3 vapor concentration reaches 1.0 × 1012 molec/cm3 via. where r is 9 and the nucleation rate coefficient knucl is 3 × 10?108 cm24/min. With 5.0 or 9.5 torr of H2O vapor present, there is an excess of particles produced over that expected from this rate coefficient, indicating an additional nucleation step in which H2O vapor participates directly to produce a hydrated salt. The coagulation coefficient of (1.87 ± 0.14) × 10?7 cm3/min found here is in good agreement with that found previously.  相似文献   

9.
Experiments and Calculations for the Chemical Transport of V2O5 with NH4Cl For the chemical transport of V2O5 in a temperature gradient (T2 – T1 = ΔT = 100 K) the influence of temperature (T2 = 770 K to 970 K) on the transport rate n′(V2O5) using an admixture of 2 to 8 mg NH4Cl (2,3 to 9,2 × 10?3 mmol/cm3) has been investigated. Also the dependence of n′ on the admixture of the transport agent has been examined from 2 to 52 mg NH4Cl (T2 = 850 K, T1 = 750 K). We observed that n′ increases with increasing temperature and increasing admixture of NH4Cl. The model calculations show the opposite tendency of the dependence on temperature; for all experiments the value of n′ was lower by a factor of 10 to 320 than the calculated one. These deviations indicate, that our knowledge on the gas phase of this system is incomplete.  相似文献   

10.
Low pressure (4.67 kPa) CH4/O2/Ar flames were seeded with approximately 5300 ppm NH3. The concentration profiles of stable and radical species in lean (? = 0.92) and rich (? = 1.13) flames were determined by molecular beam sampling mass spectrometry. Temperature profiles in these flames were measured with thermocouples whose readings were corrected for radiative losses by the Na-line reversal method. Regions of the flames were selected where the principal reaction leading to the destruction of NH3 was By correcting the measured concentrations for diffusion, the net rate of NH3 loss rate was determined in the temperature range 2080–2360 K. The rate constant k1 was determined from the net loss rate with correction for the reaction using measured values of (O) and k2 values given by Salimian, Hanson, and Kruger [1]. The best-fit Arrhenius expression for k1 in the temperature range 2080–2360 K is 1013.88 exp(?4539/T) cm3/mol-s. The results of this study combined with previous lower temperature data confirm the non-Arrhenius behavior of k1 suggested by Salimian, Hanson, and Kruger [1]. The best-fit modified three parameter expression for the range 300–2360 K is 106.33±0.2 T2 exp(?169/T) cm3/mol-s.  相似文献   

11.
The effect of unilamellar vesicles of dipalmitoylphosphotidylcholine (DPPC), both below and above the phase transfer region, on the second-order rate constants for outer-sphere electron transfer between Fe2+ and the surfactant?Ccobalt(III) complexes, cis-[Co(en)2(C12H25NH2)2]3+ and cis-[Co(trien)(C12H25NH2)2]3+ (en?=?ethylenediamine, trien?=?triethylenetetramine, C12H25NH2?=?dodecylamine) was studied by UV?CVis absorption spectroscopy. Below the phase transition temperature of DPPC, the rate decreased with increasing concentration of DPPC, while above the phase transition temperature the rate increased with increasing concentration of DPPC. It is concluded that below the phase transition temperature, there is an accumulation of surfactant?Ccobalt(III) complexes at the interior of the vesicle membrane through hydrophobic effects, and above the phase transition temperature the surfactant?Ccobalt(III) complex is released from the interior to the exterior surface of the vesicle. Through isokinetic plots, we have established that the mechanism of the reaction does not alter during the phase transition of DPPC.  相似文献   

12.
The outer sphere electron transfer reaction of surfactant cobalt(III) complexes, Cis-[Co(en)2(4CNP)(C12H25NH2)](ClO4)3 1, Cis-[Co(trien)(4CNP)(C12H25NH2)](ClO4)3 2 and Cis-[Co(trien)(4AMP)(C12H25NH2)](ClO4)3 3 (en: ethylenediamine, trien: triethylenetetramine, 4CNP: 4-cyanopyridine, 4AMP: 4-aminopyridine, C12H25NH2: dodecylamine) have been investigated by Fe2+ ion in liposome vesicles (DPPC) and ionic liquids medium at different temperatures under pseudo first order conditions using an excess of the reductant. In the presence of ionic liquid medium the second order rate constant for this electron transfer reaction was found to increase with increasing concentration of ionic liquids. Below the phase transition temperature of DPPC, the rate decreased with increasing concentration of DPPC, while above the phase transition temperature the rate increased with increasing concentration of DPPC for the same complexes has also been studied. Experimentally the reactions were found to be second order and the electron transfer postulated as outer sphere. The results have been discussed in terms of increased hydrophobic effect, self aggregation and the presence of pyridine ligand containing 4-amino and 4-cyano substituent.  相似文献   

13.
Fundamental insights into the reaction kinetics of organic–inorganic lead halide perovskite nanocrystals (LHP NCs) are still limited due to their ultrafast formation rate. Herein, we develop a water–oil interfacial synthesis of MAPbBr3 NCs (MA=CH3NH3+), which prolongs the reaction time to tens of minutes. This method makes it possible to monitor in situ the formation process of MAPbBr3 NCs and observe successive spectral evolutions from 438 to 534 nm in a single reaction by extending reaction time. The implementation of this method depends on reducing the formation rate of PbBr64? octahedra and the diffusion rate of MA. The formation of PbBr64? is a rate‐determining step, and the biphasic system offers a favorable reaction condition to control the mass transfer of MA. The effects of temperature and concentration of precursor and ligand are investigated in detail.  相似文献   

14.
Regenerated cellulose membranes have been traditionally manufactured using the viscose or the copper‐ammonia process. Today, membranes made by this process are still used in many fields such as dialysis. However, there are some serious environmental problems inherent in the existing processing routes. The new N‐methylmorpholine‐N‐oxide (NMMO) process can overcome these disadvantages and provides membranes with improved mechanical properties. In the present work, cellulose membranes were successfully prepared from NMMO solution under various conditions. It was found that the cellulose concentration is a decisive factor in controlling the membrane permeation properties. For a given coagulation system, higher cellulose concentration leads to membranes with greater rejection of bovine serum albumin (BSA) and lower pure water flux. It was also found that both the degree of polymerization (DP) and the type of cellulose pulp have great effect on the morphology and permeation properties of the membrane support layer. With increasing NMMO concentration and temperature of the coagulation bath, the pure water flux increases while the rejection of BSA decreases; a result of the larger mean pore size formed during coagulation.  相似文献   

15.
The effective coefficient for separating a mixture of NH3-O2 and NH3-N2 at different rates of distillation is determined experimentally and theoretically. The effect of the temperature of a surface layer of liquid ammonia on the purification process from permanent gases (O2 and N2) is studied. The results indicate that upon an increase in the rate of distillation, the efficiency of separating a mixture of ammonia and impurities rises as heat transfer in the surface layer becomes difficult.  相似文献   

16.
The effect of ammonia/ammonium thiocyanate (NH3/NH4SCN) treatment of the swelling behavior, structural changes, and physical properties of cotton sheeting was compared with that of sodium hydroxide and liquid ammonia mercerization. Increased percent shrinkage, accessibility to a large dye molecule, dyestuff absorption, swelling with water, and water imbibition showed that NH3/NH4SCN had improved the accessibility of the cotton fabric. X-ray diffractograms showed the characteristic Cellulose I crystal lattice. X-ray diffraction and infrared absorption spectroscopy indicated that the crystallite size was unchanged and the swelling from the NH3/NH4SCN treatment occurred in the amorphous regions of the cellulose since the observed crystal structure was unchanged. Moisture regain determinations and barium hydroxide absorption suggested that some recrystallization of the cellulose may have occurred from the NH3/NH4SCN treatment. Fibers treated with NH3/NH4SCN showed a cross sectional shape similar to that of the origianl fibers but with reduced lumen area.  相似文献   

17.
The rate coefficient for NH2 + CH4 → NH3 + CH3 (R1) has been measured in a shock tube in the temperature range 1591–2084 K using FM spectroscopy to monitor NH2 radicals. The measurements are combined with a calculation of the potential energy surface and canonical transition state theory with WKB tunneling to obtain an expression for k1 = 1.47 × 103 T 3.01 e?5001/T(K) cm3 mol?1 s?1 that describes available data in the temperature range 300 –2100 K. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 304–309, 2003  相似文献   

18.
Polyacrylamide grafted poly(vinyl alcohol)/polyvinylpyrrolidone (PAM-g-PVA/PVP) semi-interpenetrating polymer network (semi-IPN) hydrogels were designed and prepared via a simple free radical polymerization route initiated by a PVA-(NH4)2Ce(NO3)6 redox reaction technique. The structure of the PAM-g-PVA/PVP hydrogels was characterized by a Fourier transform infrared spectroscope (FTIR), and the morphologies were observed by a scanning electron microscopy (SEM). The swelling kinetics investigations demonstrated that the equilibrium swelling (Q e ) of the (PAM-g-PVA/PVP) semi-IPN hydrogels depended on PVP compositional ratios and temperature. The Q e values were reduced with increasing the PVP contents, which was in agreement with theoretical water contents (S ) fitted by swelling kinetic data, and the swelling mechanism belonged to a non-Fickian mode for the PAM-g-PVA/PVP hydrogels. These hydrogels displayed thermosensitivities different from the common thermoresponsive gels that have a lower critical solution temperature. The swelling is enhanced with increasing the temperature of the media before 42°C, and later the equilibrium swelling is contrarily reduced. Therefore, the swelling behavior of the PAM-g-PVA/PVP hydrogels may be controlled and modulated by means of the compositional ratios of PVP to PAM-g-PVA and temperature.  相似文献   

19.
20.
In order to gain an understanding of the process of Lyocell fiber formation, the melting and solidification behaviors, heat capacity and density of cellulose N-methylmorpholine-N-oxide monohydrate (NMMO-MH) solutions were studied by differential scanning calorimetry (DSC) and dilatometry, and the diameter development of Lyocell fibers in the air gap was measured online. It was found that the Lyocell process can be considered as both a melt–spinning process in the air gap and a wet-spinning process in the coagulation bath. Cellulose chains in the solutions hindered the crystallization of NMMO-MH, and the melting point of the solutions decreased with increasing cellulose concentration. The density of cellulose NMMO-MH solutions decreased linearly with increasing temperature in the solid or the liquid state, and it increased with increasing cellulose concentration. The heat capacity of the solutions increased slightly with increasing temperature and concentration. The development of fiber diameter, the velocity gradient, and the gradient of the filaments in the air gap were limited to a short distance from the spinneret orifice. The position at which the velocity and the tensile stress gradient reached their maximum values moved closer to the spinneret orifice with increasing take-up speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号