首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We show in Gn.p' that the threshold for δ(G) ? 1 is the threshold for G2G to be Hamiltonian. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
One of the most famous results in the theory of random graphs establishes that the threshold for Hamiltonicity in the Erd?s‐Rényi random graph Gn,p is around . Much research has been done to extend this to increasingly challenging random structures. In particular, a recent result by Frieze determined the asymptotic threshold for a loose Hamilton cycle in the random 3‐uniform hypergraph by connecting 3‐uniform hypergraphs to edge‐colored graphs. In this work, we consider that setting of edge‐colored graphs, and prove a result which achieves the best possible first order constant. Specifically, when the edges of Gn,p are randomly colored from a set of (1 + o(1))n colors, with , we show that one can almost always find a Hamilton cycle which has the additional property that all edges are distinctly colored (rainbow).Copyright © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 44, 328‐354, 2014  相似文献   

3.
Daniel Finkel   《Discrete Mathematics》2008,308(22):5265-5268
Hajnal and Corrádi proved that any simple graph on at least 3k vertices with minimal degree at least 2k contains k independent cycles. We prove the analogous result for chorded cycles. Let G be a simple graph with |V(G)|4k and minimal degree δ(G)3k. Then G contains k independent chorded cycles. This result is sharp.  相似文献   

4.
Let G be a graph on p vertices with q edges and let r = q ? p = 1. We show that G has at most cycles. We also show that if G is planar, then G has at most 2r ? 1 = o(2r ? 1) cycles. The planar result is best possible in the sense that any prism, that is, the Cartesian product of a cycle and a path with one edge, has more than 2r ? 1 cycles. © Wiley Periodicals, Inc. J. Graph Theory 57: 255–264, 2008  相似文献   

5.
When we wish to compute lower bounds for the chromatic number χ(G) of a graph G, it is of interest to know something about the ‘chromatic forcing number’ fχ(G), which is defined to be the least number of vertices in a subgraph H of G such that χ(H) = χ(G). We show here that for random graphs Gn,p with n vertices, fχ(Gn,p) is almost surely at least (12?ε)n, despite say the fact that the largest complete subgraph of Gn,p has only about log n vertices.  相似文献   

6.
We consider the problem of the minimum number of Hamiltonian cycles that could be present in a Hamiltonian maximal planar graph on p vertices. In particular, we construct a p-vertex maximal planar graph containing exactly four Hamiltonian cycles for every p ≥ 12. We also prove that every 4-connected maximal planar graph on p vertices contains at least p/(log2 p) Hamiltonian cycles.  相似文献   

7.
This note can be treated as a supplement to a paper written by Bollobas which was devoted to the vertices of a given degree in a random graph. We determine some values of the edge probability p for which the number of vertices of a given degree of a random graph G ∈ ??(n, p) asymptotically has a normal distribution.  相似文献   

8.
9.
Let p and C4 (G) be the number of vertices and the number of 4-cycles of a maximal planar graph G, respectively. Hakimi and Schmeichel characterized those graphs G for which C4 (G) = 1/2(p2 + 3p - 22). This characterization is correct if p ≥ 9. However, for p = 7 or 8, there is exactly one other graph which violates the theorem in the sense that the upper bound of C4 (G) is also attained.  相似文献   

10.
Let G be a maximal planar graph with p vertices, and let Ck(G) denote the number of cycles of length k in G. We first present tight bounds for C3(G) and C4(G) in terms of p. We then give bounds for Ck(G) when 5 ≤ k ≤ p, and consider in particular bounds for Cp(G), in terms of p. Some conjectures and unsolved problems are stated.  相似文献   

11.
12.
We describe a polynomial (O(n1.5)) time algorithm DHAM for finding hamilton cycles in digraphs. For digraphs chosen uniformly at random from the set of digraphs with vertex set {1, 2, …, n} and m = m(n) edges the limiting probability (as n → ∞) that DHAM finds a hamilton cycle equals the limiting probability that the digraph is hamiltonian. Some applications to random “travelling salesman problems” are discussed.  相似文献   

13.
Results are obtained that substantially strengthen a previously known bound for the chromatic number of a random subgraph of the Kneser graph.  相似文献   

14.
This paper describes a polynomial time algorithm HAM that searches for Hamilton cycles in undirected graphs. On a random graph its asymptotic probability of success is that of the existence of such a cycle. If all graphs withn vertices are considered equally likely, then using dynamic programming on failure leads to an algorithm with polynomial expected time. The algorithm HAM is also used to solve the symmetric bottleneck travelling salesman problem with probability tending to 1, asn tends to ∞. Various modifications of HAM are shown to solve several Hamilton path problems. Supported by NSF Grant MCS 810 4854.  相似文献   

15.
The problem of packing Hamilton cycles in random and pseudorandom graphs has been studied extensively. In this paper, we look at the dual question of covering all edges of a graph by Hamilton cycles and prove that if a graph with maximum degree Δ satisfies some basic expansion properties and contains a family of edge disjoint Hamilton cycles, then there also exists a covering of its edges by Hamilton cycles. This implies that for every α > 0 and every there exists a covering of all edges of G(n,p) by Hamilton cycles asymptotically almost surely, which is nearly optimal.Copyright © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 44, 183‐200, 2014  相似文献   

16.
We consider the standard random geometric graph process in which n vertices are placed at random on the unit square and edges are sequentially added in increasing order of edge‐length. For fixed k?1, weprove that the first edge in the process that creates a k‐connected graph coincides a.a.s. with the first edge that causes the graph to contain k/2 pairwise edge‐disjoint Hamilton cycles (for even k), or (k?1)/2 Hamilton cycles plus one perfect matching, all of them pairwise edge‐disjoint (for odd k). This proves and extends a conjecture of Krivelevich and M ler. In the special case when k = 2, our result says that the first edge that makes the random geometric graph Hamiltonian is a.a.s. exactly the same one that gives 2‐connectivity, which answers a question of Penrose. (This result appeared in three independent preprints, one of which was a precursor to this article.) We prove our results with lengths measured using the ?p norm for any p>1, and we also extend our result to higher dimensions. © 2011 Wiley Periodicals, Inc. J Graph Theory 68:299‐322, 2011  相似文献   

17.
It was only recently shown by Shi and Wormald, using the differential equation method to analyze an appropriate algorithm, that a random 5‐regular graph asymptotically almost surely has chromatic number at most 4. Here, we show that the chromatic number of a random 5‐regular graph is asymptotically almost surely equal to 3, provided a certain four‐variable function has a unique maximum at a given point in a bounded domain. We also describe extensive numerical evidence that strongly suggests that the latter condition holds. The proof applies the small subgraph conditioning method to the number of locally rainbow balanced 3‐colorings, where a coloring is balanced if the number of vertices of each color is equal, and locally rainbow if every vertex is adjacent to at least one vertex of each of the other colors. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 157–191, 2009  相似文献   

18.
We show that a directed graph of order n will contain n-cycles of every orientation, provided each vertex has indegree and outdegree at least (1/2 + n-1/6)n and n is sufficiently large. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
We show that if G is a random 3-regular graph on n vertices, then its dominating number, D(G), almost surely satisfies .2636nD(G) ≤ .3126n. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号