首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Complexes formed by guanidinium cation and a pair of aromatic molecules among benzene, phenol, or indole have been computationally studied to determine the characteristics of the cation···π interaction in ternary systems modeling amino acid side chains. Guanidinium coordinates to the aromatic units preferentially in the following order: indole, phenol, and benzene. Complexes containing two different aromatic units show an intermediate behavior between that observed for complexes with only one kind of aromatic unit. Most stable structures correspond to doubly‐T shaped arrangements with the two aromatic units coordinating guanidinium by its NH2 groups. Other structures with only one aromatic unit coordinated to guanidinium, such as T‐shaped or parallel‐stacked ones, are less favorable but still showing significant stabilization. In indole and phenol complexes, the formation of hydrogen bonds between the aromatic molecules introduces extra stabilization in T‐shaped structures. Three body effects are small and repulsive in doubly T‐shaped minima. Only when hydrogen bonds involving the aromatic molecules are formed in T‐shaped structures a cooperative effect can be observed. In most complexes the interaction is controlled by electrostatics, with induction and dispersion also contributing significantly depending on the nature and orientation of the aromatic species forming the complex. Although the stability in these systems is mainly controlled by the intensity of the interaction between guanidinium and the aromatic molecules coordinated to it, interactions between aromatic molecules can modulate the characteristics of the complex, especially when hydrogen bonds are formed. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
4.
Using ferrocenecarboxylic acid (FcCOOH) as organometallic ligand in the synthesis of heterometallic complexes led to the isolation of the compound [(FcCOO)Cu(bpy)2](BF4) · bpy · CH3OH. It was characterized by IR spectroscopy, EA, powder XRD, UV, and TGA measurements. Single‐crystal X‐ray structural analysis revealed that a unique 2D supramolecular network purely formed by aromatic π ··· π stacking interactions was observed, namely, {[(FcCOO)Cu(bpy)2](BF4) · bpy · CH3OH} ( 1 ). The solid UV/Vis diffuse reflectance spectrum revealed the optical energy gap of 1 to be 3.54 eV, which is dramatically blue shifted compared with the value of ferrocene. Experimental results of thermal analysis and electrochemical analysis show that 1 has good thermal and better electrochemical stability.  相似文献   

5.
Noncovalent interactions involving aromatic rings, such as π···π stacking, CH···π are very essential for supramolecular carbon nanostructures. Graphite is a typical homogenous carbon matter based on π···π stacking of graphene sheets. Even in systems not involving aromatic groups, the stability of diamondoid dimer and layer‐layer graphane dimer originates from C − H···H − C noncovalent interaction. In this article, the structures and properties of novel heterogeneous layer‐layer carbon‐nanostructures involving π···H‐C‐C‐H···π···H‐C‐C‐H stacking based on [n ]‐graphane and [n ]‐graphene and their derivatives are theoretically investigated for n = 16–54 using dispersion corrected density functional theory B3LYP‐D3 method. Energy decomposition analysis shows that dispersion interaction is the most important for the stabilization of both double‐ and multi‐layer‐layer [n ]‐graphane@graphene. Binding energy between graphane and graphene sheets shows that there is a distinct additive nature of CH···π interaction. For comparison and simplicity, the concept of H‐H bond energy equivalent number of carbon atoms (noted as NHEQ), is used to describe the strength of these noncovalent interactions. The NHEQ of the graphene dimers, graphane dimers, and double‐layered graphane@graphene are 103, 143, and 110, indicating that the strength of C‐H···π interaction is close to that of π···π and much stronger than that of C‐H···H‐C in large size systems. Additionally, frontier molecular orbital, electron density difference and visualized noncovalent interaction regions are discussed for deeply understanding the nature of the C‐H···π stacking interaction in construction of heterogeneous layer‐layer graphane@graphene structures. We hope that the present study would be helpful for creations of new functional supramolecular materials based on graphane and graphene carbon nano‐structures. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
7.
8.
The potential applications of tetrel bonds involving π‐molecules in crystal materials and biological systems have prompted a theoretical investigation of the strength of π···σ‐hole tetrel bond in the systems with acetylene and its derivatives of CH3, AuPH3, Li, and Na as well as benzene as the π electron donors. A weak tetrel bond (ΔE < 15 kJ/mol) is found between acetylene and tetrel donor molecule TH3F (T = C, Si, Ge, Sn, and Pb). All substituents strengthen the π tetrel bond, but the electron‐donating sodium atoms have the largest enhancing effect and the interaction energy is up to about 24 kJ/mol in C2Na2‐CH3F. The electron‐donating ability of the AuPH3 fragment is intermediate between the methyl group and alkali metal atom. The origin of the stability of the π tetrel‐bonded complex is dependent on the nature of the tetrel donor and acceptor molecules and can be regulated by the substituents.  相似文献   

9.
A series of crystalline host compounds, which have a bicyclo[2.2.1]heptene-7-one system, has been synthesized and their inclusion behavior has been investigated. The cycloadduct of phencyclone and N-naphthylmaleimide forms a 1:1 crystalline inclusion complex with 2-butanone. The crystal structure indicates the presence of weak lattice forces supported by C---H···π and C---H···O interactions.  相似文献   

10.
1,4-Dimethylpiperazine mono-betaine (1-carboxymethyl-1,4-dimethylpiperazinium inner salt, MBPZ) crystallizes as monohydrate. The crystals are orthorhombic, space group Pccn. Two MBPZ molecules and two water molecules form a cyclic oligomer, (MBPZ·H2O)2. The O–H···O and O–H···N hydrogen bonds are of 2.769(1) and 2.902(1) Å, respectively. The dimers interact with the neighboring molecules through the C–H···O hydrogen bonds of 3.234(1) Å. The piperazine ring assumes a chair conformation with the N(4)–CH3 and N+(1)–CH2COO groups in the equatorial position and the N+(1)–CH3 group in the axial one. The FTIR spectrum is compared with that calculated by the B3LYP/6-31G(d,p) level of theory.  相似文献   

11.
12.
13.
The effect of substitution on the strength and nature of CH···N hydrogen bond in XCCH···NH3 (X = F, Cl, Br, OH, H, Me) and NCH···NH3 complexes were investigated by quantum chemical calculations. Ab initio calculations were performed using MP2 method with a wide range of basis sets. With tacking into account the BSSE and ZPVE, the values of BEs decrease. Replacement of the nonparticipatory hydrogen atom of HCCH by the electronegative atoms (F, Cl, and Br), lead to the BEs increases. The BE corresponding to the replacement of the nonparticipatory hydrogen atom of HCCH by the OH and CH3 groups decreases. A far greater enhancement of the interaction energy arises from replacement of HCCH by the more acidic HCN. The natural bond orbital analysis and the Bader's quantum theory of atoms in molecules were also used to elucidate the interaction characteristics of these complexes. The electrostatic nature of H‐bond interactions is predicted from QTAIM analysis. In addition, the relationship between the isotropic and anisotropic chemical shifts of the bridging hydrogen and binding energy of complexes as well as electron density at N···H BCPs were investigated. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
15.
16.
17.
18.
19.
Quantum calculations at the MP2/aug‐cc‐pVDZ level are used to analyze the SH···N H‐bond in complexes pairing H2S and SH radical with NH3, N(CH3)3, NH2NH2, and NH2N(CH3)2. Complexes form nearly linear H‐bonds in which the S? H covalent bond elongates and shifts its stretching frequency to the red. Binding energies vary from 14 kJ/mol for acceptor NH3 to a maximum of 22 kJ/mol for N(CH3)3 and N(CH3)2NH2. Analysis of geometric, vibrational, and electronic data indicate that the SH···N interaction involving SH is slightly stronger than that in which the closed‐shell H2S serves as donor. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

20.
杨颙  张为俊  高晓明 《中国化学》2006,24(7):887-893
A theoretical study on the blue-shifted H-bond N-H…O and red-shifted H-bond O-H…O in the complexHNO…H_2O_2 was conducted by employment of both standard and counterpoise-corrected methods to calculate thegeometric structures and vibrational frequencies at the MP2/6-31G(d),MP2/6-31 G(d,p),MP2/6-311 q G(d,p),B3LYP/6-31G(d),B3LYP/6-31 G(d,p) and B3LYP/6-311 G(d,p) levels.In the H-bond N-H…O,the calcu-lated blue shift of N-H stretching frequency is in the vicinity of 120 cm~(-1) and this is indeed the largest theoreticalestimate of a blue shift in the X-H…Y H-bond ever reported in the literature.From the natural bond orbital analy-sis,the red-shifted H-bond O-H…O can be explained on the basis of the dominant role of the hyperconjugation.For the blue-shifted H-bond N-H…O,the hyperconjugation was inhibited due to the existence of significant elec-tron density redistribution effect,and the large blue shift of the N-H stretching frequency was prominently due tothe rehybridization of sp~n N-H hybrid orbital.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号