首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pressure drop and heat transfer coefficient in tube bundle of shell and tube heat exchangers are investigated considering viscous dissipation effects. The governing equations are solved numerically. Because of temperature-dependent viscosity the equations should be solved simultaneously. The flexible tubes vibration is modeled in a quasi-static method by taking the first tube of the row to be in 20 asymmetric positions with respect to the rest of the tubes which are assumed to be fixed and time averaging the steady state solutions corresponding to each one of these positions .The results show that the eccentricity of the first tube increases pressure drop and heat transfer coefficients significantly comparing to the case of rigid tube bundles, symmetrically placed. In addition, these vibrations not only compensate the effect of viscous dissipations on heat transfer coefficient but also increase heat transfer coefficient. The constant viscosity results obtained from our numerical method have a good agreement with the available experimental data of constant viscosity for flexible tube heat exchangers.  相似文献   

2.
Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25–2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500–4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.  相似文献   

3.
The two-dimensional Navier-Stokes equations and the energy equation governing steady laminar incompressible flow are solved by a penalty finite-element model for flow across finite depth, five-row deep, staggered bundles of cylinders. Pitch to diameter ratios of 1·5 and 2·0 are considered for cylinders in equilateral triangular and square arrangements. Reynolds numbers studied range from 100 to 400, and a Prandtl number of 0·7 is used. Velocity vector fields, streamline patterns, vorticity, pressure and temperature contours, local and average Nusselt numbers, pressure and shear stress distributions around the cylinder walls and drag coefficients are presented. The results obtained agree well with available experimental and numerical data.  相似文献   

4.
Experiments were carried out to compare pressure drop and heat transfer coefficients for a plain, microfin, and twisted-tape insert-tubes. The twisted-tape experiments include three different twist ratios each with two different widths. The data were taken at Reynolds numbers well in the laminar region. The heat transfer data were obtained in a single shell-and-tube heat exchanger where steam is used as a heat source to obtain a uniform wall temperature and the working fluid in the tube is oil. The twist ratio and the width of the tape seem to have a large effect on the performance of the twisted-tape insert. The results demonstrate that as the twist ratio decreases, the twisted-tape will give better heat transfer enhancement. The loose-fit (W=10.8 mm) is recommended to be used in the design of heat exchanger where low twist ratios (Y=5.4, and Y=3.6) and high pressure drop situations are expected since it is easier to install and remove for cleaning purposes. Other than these situations, the tight-fit tape gives a better performance over the loose-fit tape. For the microfin tube tested in this paper, the data shows a small increase in both heat transfer and pressure drop. This type of microfin tube is not recommended to be used in laminar flow conditions.  相似文献   

5.
The stochastic equations of continuum are used for determining the heat transfer coefficients. As a result, the formulas for Nusselt (Nu) number dependent on the turbulence intensity and scale instead of only on the Reynolds (Peclet) number are proposed for the classic flows of a nonisothermal fluid in a round smooth tube. It is shown that the new expressions for the classical heat transfer coefficient Nu, which depend only on the Reynolds number, should be obtained from these new general formulas if to use the well-known experimental data for the initial turbulence. It is found that the limitations of classical empirical and semiempirical formulas for heat transfer coefficients and their deviation from the experimental data depend on different parameters of initial fluctuations in the flow for different experiments in a wide range of Reynolds or Peclet numbers. Based on these new dependences, it is possible to explain that the differences between the experimental results for the fixed Reynolds or Peclet numbers are caused by the difference in values of flow fluctuations for each experiment instead of only due to the systematic error in the experiment processing. Accordingly, the obtained general dependences of Nu for a smooth round tube can serve as the basis for clarifying the experimental results and empirical formulas used for continuum flows in various power devices. Obtained results show that both for isothermal and for nonisothermal flows, the reason for the process of transition from a deterministic state into a turbulent one is determined by the physical law of equivalence of measures between them. Also the theory of stochastic equations and the law of equivalence of measures could determine mechanics which is basis in different phenomena of self-organization and chaos theory.  相似文献   

6.
This paper is concerned with the results of numerical calculations for transient flow in in-line-square and rotated-square tube banks with a pitch-to-diameter ratio of 2:1, in the Reynolds number range of 30–3000. Transient-periodic behaviour is induced by the consideration of two or more modules, with a sinusoidal span-wise perturbation being applied in the upstream module. There is a triode-like effect, whereby the downstream response to the stimulus is amplified, and there is a net gain in the crosswise flow component. When an appropriate feedback mechanism is provided, a stable transient behaviour is obtained, with alternate vortices being shed from each cylinder. Flow visualization studies of the results of the calculations are presented together with quantitative details of pressure drop, lift, drag and heat transfer. For the staggered bank, a wake-switching or Coanda effect was observed as the serpentine-shaped wake attached to alternate sides of the downstream cylinder. The induced response is independent of the amplitude and frequency of the applied disturbance, including the case of spontaneous behaviour with no excitation mechanism. For the in-line case where each cylinder is in the shadow of the previous one, the motion is less pronounced; however, a shear-layer instability associated with the alternating spin of shed vortices was observed. In this case, the response was found to be somewhat dependent on the frequency of the applied disturbance, and a transient motion could not be induced spontaneously in the absence of an explicit feedback mechanism. Calculated Strouhal numbers were in fair agreement with experimental data: for the staggered geometry, they had values of between 0·26 and 0·35, or from −21 to +6% higher than measured values, while for the in-line geometry, the Strouhal numbers ranged between 0·09 and 0·12, or about 20–40% lower than experimental values.  相似文献   

7.
 Flow visualization, heat transfer and pressure drop characteristics in flow through staggered tube bundles have been regarded as classical, with results well-documented. However, the mechanism of producing such results has been left untouched. Applications of staggered tube bundles are abundant in industry, for example as heat exchange devices like the shell-and-tube type and fuel bundles in nuclear reactor cores. An experimental study is recorded in the present paper which investigates the interaction of von Karman vortices and intersecting main streams in staggered tube bundles. Flow visualization by means of the particle tracing method, laser Doppler velocimetry (LDV) and pressure drop measurements using a piezometer are conducted. A modified Reynolds number appropriate to flow through a staggered tube arrangement is defined together with a pressure drop coefficient. Auto-correlation and power spectrum analyses of signals obtained from LDV measurements yield an optimum spectrum frequency which is correlated against the Reynolds number. It is concluded that flow characteristics in staggered tube bundles are determined by the interaction between the von Karman vortex street and X-shaped interacting main streams. Received: 4 August 1997 / Accepted: 3 October 1998  相似文献   

8.
This investigation is aimed at studying the heat transfer characteristics and pressure drop for turbulent airflow in a sudden expansion pipe equipped with propeller swirl generator. The investigation is performed for the Reynolds number ranging from 10,000 to 41,000 under a uniform heat flux condition. The experiments are conducted for three locations for the propeller fan upstream the sudden expansion and three locations downstream the sudden expansion (N = 5 blades and blade angle of 45°). The influences of using a freely rotating propeller on heat transfer enhancement and pressure drop are reported. The experimental results indicate that inserting the propeller downstream of the tube provides considerable improvement of the heat transfer rate higher than inserting the propeller upstream the tube. The increase in pressure drop resulting from using the propeller upstream is found to be higher than the downstream swirler. The maximum performance enhancement for the downstream swirler is about 326% while it is about 213% for upstream one. Correlations for relative mean Nusselt number and enhancement performance are presented for different fan locations and different Reynolds numbers.  相似文献   

9.
An experiment is carried out to investigate the characteristics of the augmentation of heat transfer and pressure drop by different strip-type inserts in small tube having an inside diameter of 2.0 mm. The effects of the imposed wall heat flux, mass flux, strip inserts with various configurations (heights, widths, pitches) on the measured augmentative heat transfer and pressure drop are examined in detail. In order to obtain insight into the fluid flow phenomena, flow visualization was also made to observe the detailed fluid flow characteristics of the present tubes inserted with strip-type inserts. In addition, comparisons are made with a plain tube having the same length, heat transfer area and experimental conditions. The measured heat transfer coefficients and pressure drops for this small pipe are also emphasized to compare with those for larger pipes. Furthermore, in order to compare results from the different configurations of strip-type inserts, several enhancement factors and performance ratios are defined to account for the effects of augmentation. Moreover, correlation equations for the heat transfer coefficient and pressure drop of the present study are proposed.The financial support extended by the National Science Council of the Republic of China through grant No. NSC-89-2212-E-230-004.  相似文献   

10.
Experiments were performed to determine the heat transfer and pressure drop characteristics in the entrance and fully developed regions of tubes with internal wave-like longitudinal fins. The test tube has a double-pipe structure, with the inner tube as an insertion. The wave-like fins are in the annulus and span its full width. Experiments were conducted for two cases: one with the inner tube blocked (no air flowing through it) and the other with the inner tube unblocked. The outer tube was electrically heated. Local and average heat transfer coefficients and friction factors were measured. The friction factor and Nusselt number correlations in the fully developed region were obtained in the Reynolds number range of 9×102 to 3.5×103. It has been found that the wave-like fins enhance heat transfer significantly with the blocked case being superior. In addition, the in-tube heat transfer process is characterized by an earlier transition from laminar to turbulent flow and Reynolds number-dependent thermal entrance length. Received on 12 May 1998  相似文献   

11.
A scheme to compute the friction and heat-transfer coefficients for a fluid flow with polymer admixtures to reduce friction, based on the mixing-path-length representation, is proposed. The influence of the molecular Prandtl number, the Reynolds number, and the magnitude of friction reduction by polymer molecules on the regularities of heat transfer is analyzed. Formulas are obtained to determine the heat-exchange coefficients. The results of computations by means of the scheme proposed are in satisfactory agreement with experimental results.  相似文献   

12.
An experimental investigation on the convective heat transfer and friction factor characteristics in the plain and helically dimpled tube under turbulent flow with constant heat flux is presented in this work using CuO/water nanofluid as working fluid. The effects of the dimples and nanofluid on the Nusselt number and the friction factor are determined in a circular tube with a fully developed turbulent flow for the Reynolds number in the range between 2500 and 6000. The height of the dimple/protrusion was 0.6 mm. The effect of the inclusion of nanoparticles on heat transfer enhancement, thermal conductivity, viscosity, and pressure loss in the turbulent flow region were investigated. The experiments were performed using helically dimpled tube with CuO/water nanofluid having 0.1%, 0.2% and 0.3% volume concentrations of nanoparticles as working fluid. The experimental results reveal that the use of nanofluids in a helically dimpled tube increases the heat transfer rate with negligible increase in friction factor compared to plain tube. The experimental results showed that the Nusselt number with dimpled tube and nanofluids under turbulent flow is about 19%, 27% and 39% (for 0.1%, 0.2% and 0.3% volume concentrations respectively) higher than the Nusselt number obtained with plain tube and water. The experimental results of isothermal pressure drop for turbulent flow showed that the dimpled tube friction factors were about 2-10% higher than the plain tube. The empirical correlations developed for Nusselt number and friction factor in terms of Reynolds number, pitch ratio and volume concentration fits with the experimental data within ±15%.  相似文献   

13.
Two-dimensional hypersonic rarefied gas flow around blunt bodies is investigated for the continuum to free-molecular transition regime. In [1], as a result of an asymptotic analysis, three rarefied gas flow regimes, depending on the relationship between the problem parameters, were detected and one of these regimes was investigated. In the present study, asymptotic solutions of the thin viscous shock layer equations at small Reynolds numbers are obtained for the other two flow regimes. Analytical expressions for the heat transfer, friction and pressure coefficients are obtained as functions of the incident flow parameters and the body geometry and temperature. As the Reynolds number tends to zero, the values of these coefficients approach their values in free-molecular flow. The scaling parameters of hypersonic rarefied gas flow around bodies are determined for different regimes. The asymptotic solutions are compared with the results of direct Monte Carlo simulation.  相似文献   

14.
Flow boiling heat transfer in a vertical spirally internally ribbed tube   总被引:3,自引:0,他引:3  
 Experiments of flow boiling heat transfer and two-phase flow frictional pressure drop in a spirally internally ribbed tube (φ22×5.5 mm) and a smooth tube (φ19×2 mm) were conducted, respectively, under the condition of 6×105 Pa (absolute atmosphere pressure). The available heated length of the test sections was 2500 mm. The mass fluxes were selected, respectively, at 410, 610 and 810 kg/m2 s. The maximum heat flux was controlled according to exit quality, which was no more than 0.3 in each test run. The experimental results in the spirally internally ribbed tube were compared with that in the smooth tube. It shows that flow boiling heat transfer coefficients in the spirally internally ribbed tube are 1.4–2 times that in the smooth tube, and the flow boiling heat transfer under the condition of smaller temperature differences can be achieved in the spirally internally ribbed tube. Also, the two-phase flow frictional pressure drop in the spirally internally ribbed tube increases a factor of 1.6–2 as compared with that in the smooth tube. The effects of mass flux and pressure on the flow boiling heat transfer were presented. The effect of diameters on flow boiling heat transfer in smooth tubes was analyzed. Based on the fits of the experimental data, correlations of flow boiling heat transfer coefficient and two-phase flow frictional factor were proposed, respectively. The mechanisms of enhanced flow boiling heat transfer in the spirally internally ribbed tube were analyzed. Received on 1 December 1999  相似文献   

15.
A mathematical model based on the annular flow pattern is developed to simulate the evaporation of refrigerants flowing under varied heat flux in a double tube evaporator. The finite difference form of governing equations of this present model is derived from the conservation of mass, energy and momentum. The experimental set-up is designed and constructed to provide the experimental data for verifying the simulation results. The test section is a 2.5 m long counterflow double tube heat exchanger with a refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tube is made from smooth horizontal copper tubing of 9.53 mm outer diameter and 7.1 mm inner diameter. The agreement of the model with the experimental data is satisfactory. The present model can be used to investigate the axial distributions of the temperature, heat transfer coefficient and pressure drop of various refrigerants. Moreover, the evaporation rate or the other relevant parameters that is difficult to measure in the experiment are predicted and presented here. The results from the present mathematical model show that the saturation pressure and temperature of refrigerant decrease along the tube due to the tube wall friction and the flow acceleration of refrigerant. The liquid heat transfer coefficient increases with the axial length due to reducing the thickness of the liquid refrigerant film. Due to increase of the liquid heat transfer coefficient, increasing wall heat flux is obtained.Finally, the evaporation rate of refrigerant increases with increasing wall heat flux.  相似文献   

16.
The influence of small cylindrical bluntness of the leading edge of a flat plate on formation of spatial structures in a nominally two-dimensional supersonic compression corner flow at the Mach number M∞ ≈ 8 and a laminar state of the undisturbed boundary layer is studied by the method of temperature-sensitive paints. Streamwise vortices are found in the region of reattachment of the separated flow in a wide range of Reynolds numbers (0.15 · 106–2.55 · 106) for various angles of flow deflection and plate lengths. It is demonstrated that the existence of these vortices induces spanwise oscillations of the heat transfer coefficient; the amplitude of these oscillations may reach 30%. The maximum deviations of the Stanton number reaching 80% are observed in the case with significant roughness of the leading edge of the flat plate. Both the maximum Stanton numbers in the reattachment region and the amplitude of spanwise oscillations of the Stanton number induced by streamwise vortices are found to decrease significantly in the case of small bluntness of the leading edge. Solutions of three-dimensional Navier–Stokes equations are obtained for some test conditions. The computed results are in good agreement with experimental data, which points to a significant stabilizing effect of small bluntness on the intensity of streamwise vortices.  相似文献   

17.
An experimental study was carried out to investigate condensation heat transfer and pressure drop characteristics of R-134a in a coiled double tube oriented with its helix axis in the vertical direction. Measurements were obtained at inlet pressure of 815 kPa for refrigerant mass flux ranging from 95 to 710 kg/m2s and cooling water Reynolds number varying from 1000 to 14000. Presented results illustrate the effects of refrigerant mass flux and average condensation temperature difference on the condensation heat transfer coefficient and pressure drop. Comparison with relevant data from other sources indicates a reasonable agreement. An empirical correlation was obtained for predicting condensation heat transfer coefficient. The present study may be considered of a practical and theoretical interest for the design of the helical double-tube condensers using R-134a as the working fluid. M. El-Sayed Mosaad is on leave from Mechanical Engineering Department, Mansoura University, Egypt.  相似文献   

18.
In the commercial test for smooth tube inserted with rotors-assembled strand comparing with non-inserted ones on condensers in electric power plant, using water as working fluid, the single-phase pressure drop and heat transfer were measured. It was found difficult to receive reliable and accurate enough data through commercial test. Meanwhile, the single-phase pressure drop and heat transfer in a rotors-assembled strand inserted tube were measured in laboratory, with the tube side Prandtl numbers varying from 5.67 to 5.80 and the tube side Reynolds numbers varying from 21,300 to 72,200. Before that, a validation experiment based on the same smooth tube was carried out to testify the experimental system and the data reduction method, in which fixed mounts were employed to eliminate entrance effects. The Prandtl numbers varied from 5.64 to 5.76 and the Reynolds numbers varied from 19,000 to 56,000 in the tube. The annular side Reynolds numbers remained nearly constant at the value of around 50,000 for all experiments, with the annular side Prandtl numbers varying from 8.02 to 8.22. The experimental results of smooth tube show that employment of fixed mounts leads to a visible bias of friction factor at relative low Reynolds numbers while it hardly affects the Nusselt numbers. On the other hand, experiment for the tube inserted with rotors-assembled strand show remarkable improvement for heat transfer with the Nusselt number increased by 9.764–11.87% and the overall heat transfer coefficient increased by 7.08–7.49% within the range of Reynolds number from about 21,300 to 55,500. Meanwhile, friction factor increases inevitably by 278.1–353.9% within the same range of Reynolds number. Based on through multivariant linear normal regression method, the Reynolds number and Prandtl number dependencies of the Nusselt number and friction factor were determined to be Nu = 0.0031Re0.9Pr1.0849 and f = 0.993Re−0.22.  相似文献   

19.
This investigation is aimed at studying the heat transfer characteristics and pressure drop for turbulent airflow in a sudden expansion pipe equipped with propeller type swirl generator or spiral spring with several pitch ratios. The investigation is performed for the Reynolds number ranging from 7500 to 18,500 under a uniform heat flux condition. The experiments are also undertaken for three locations for the propeller fan (N = 15 blades and blade angle of 65°) and three pitch ratios for the spiral spring (P/D = 10, 15 and 20). The influences of using the propeller rotating freely and inserted spiral spring on heat transfer enhancement and pressure drop are reported. In the experiments, the swirl generator and spiral spring are used to create a swirl in the tube flow. Mean and relative mean Nusselt numbers are determined and compared with those obtained from other similar cases. The experimental results indicate that the tube with the propeller inserts provides considerable improvement of the heat transfer rate over the plain tube around 1.69 times for X/H = 5. While for the tube with the spiral spring inserts, an improvement of the heat transfer rate over the plain tube around 1.37 times for P/d = 20. Thus, because of strong swirl or rotating flow, the propeller location and the spiral spring pitch become influential on the heat transfer enhancement. The increase in pressure drop using the propeller is found to be three times and for spiral spring 1.5 times over the plain tube. Correlations for mean Nusselt number, fan location and spiral spring pitch are provided.  相似文献   

20.
The flow field through tubes with multiple axisymmetric constrictions in tubes was studied numerically. Two practical problem cases were considered and the numerical scheme was developed for both. In the first case there are one, two, three and four constrictions in the tube. The effects of the number of constrictions on wall shear stress, pressure drop, streamline, vorticity and velocity distributions as the flow passes through the tube were studied and the development of the periodicity characteristics was investigated. In the second case there were multiple constrictions in the tube equidistant from each other. For this case the governing equations were reformulated for a module at a sufficient distance downstream from the inlet where the entrance region effects could be ignored and flow field is assumed to repeat itself. The flow field solutions were obtained in this region. The governing equations were formulated in curvilinear co-ordinates and a finite volume discretization procedure was used to solve the problem. The computations were carried out over a range of Reynolds numbers between 50 to 250 for constrictions with 75 percent area reduction. The method is validated by comparing some of the solutions with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号