首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On ?Lithovanadates”?: Rb2[LiVO4] and Cs2[LiVO4] By heating of well ground mixtures of the binary oxides [A2O, Li2O, V2O5, A : Li: V = 2.2 : 1.1 : 1.0 (A = Rb, Cs); Ni-tube, 750° 25 d] we obtained Rb2[LiVO4] and Cs2[LiVO4] colourless, orthorhombic single crystals. We found a new type of ?Lithovanadate”?-structure: space group Cmc21; a = 587.9(1), b = 1170.1(1), c = 793.3(1) pm, Z = 4 (A = Rb) bzw. a = 610.5(1), b = 1222.6(3), c = 815.5(2) pm, Z = 4 (A = Cs). The structure was determined by four-circle diffractometer data [MoKα -radiation; 997 from 1157 I0(hkl), R = 7.75%, Rw = 5.54% (A = Rb); 686 from 686 I0(hkl), R = 6.97%, Rw = 4.20% (A = Cs)] parameters see text. The Madelung part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, have been calculated.  相似文献   

2.
The Mixed‐Valent Oxoferrate(II,III) K3[Fe2O4] – A Stuffed Variant of the K2[Fe2O4] Type of Structure K3[Fe2O4] has been obtained by tempering “Cs3K3CdO4” in sealed Fe containers (36 d at 450–480 °C) as dark red transparent single crystals of rectangular shape. The structure determination (IPDS diffractometer data, MoKα, 1891 collected reflections, 234 symmetry independent, R1 = 0.033, wR2 = 0.088) confirms the space group Fddd; a = 596.11(9), b = 1140.3(1), c = 1717.9(3) pm; Z = 8. K3[Fe2O4] exhibits a structure with [FeO4] tetrahedra connected via corners leading to a three‐dimensional network closely related to the KFeO2 type of structure. From the oxidation at 520 °C of iron metal with KO2 in the presence of Na2O black single crystal of K2[Fe2O4] have been obtained. K2[Fe2O4] crystallizes in the space group Pbca with Z = 8 and a = 559.18(7), b = 1122.1(1), c = 1592.8(2) pm (IPDS diffractometer data, MoKα, collected refelctions: 9543, 1213 symmetry independent, R1 = 0.043, wR2 = 0.102).  相似文献   

3.
A New Oxoferrate with “Butterfly-Motiv”: K2Na4[Fe2O5] Dark red-brown single-crystals of K2Na4[Fe2O5] were obtained for the first time by heating “K3Na3CdO4” at 500°C in closed Fe-cylinders. Determination and refinement of the crystal structure confirms the space group P42/mnm (No. 136). Four-circle diffractometer data: MoKα , 373 out of 373 Io(hkl); R = 5.3%; Rw = 4.6%; a = 645.94(5), c = 1 039.2(1) pm. In contrast to the already known oxoferrates(II) with the “Butterfly-Motiv”, Rb6[Fe2O5] and K6[Fe2O5] [1], we now found an isotypic structure for K2Na4[Fe2O5] with the oxocobaltates of Rb2Na4[Co2O5] and K2Na4[Co2O5] [2].  相似文献   

4.
The First ?Lithovanadate”?: K2{LiVO4} By heating of well ground mixtures of the binary oxides [K2O, Li2O, V2O5, K:Li: V = 2.2:1.1:1.0; Ni-tube, 900°C, 46 d] colourless monoclinic single crystals of K2[LiVO4] have been prepared for the first time: space group C2/m; a = 835.7(1) pm, b = 774.5(1) pm, c = 753,3(1) pm, β = 90.23(1)°. The structure was determined by four-circle diffractometer data [MoKα, 1018 form 1262 I0 (hkl), R = 8.65%, Rw = 5.67%], parameters see text. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, have been calculated.  相似文献   

5.
A New ?Orthoindate”? of an Alkali Metal: K5[InO4] Hitherto unknown K5[InO4] was prepared by heating intimate mixtures of K2O, In2O3 and elementar In (molar ratio 10.0 : 1.0 : 4.0) in closed Ni-cylinders (30 days, 500°C) in form of pale red, nearly colourless, transparent, single crystals. Same crystals were obtained by heating mixtures of K2O, CdO and elementar In (molar ratio 3.1 : 1.0 : 1.0) in closed Ag-cylinders (30 days, 450°C), too. In this case we also found yellow-brown crystals of K14[In4O13] [1]. Structure determination by four circle diffractometer data (MoKα, 15279 out 17454 Io(hkl), R = 5.60%, Rw = 5.25%). Space group P1 with a = 1827.9 pm; b = 1694.4 pm; c = 1329.4 pm; α = 113.3°; β = 111.4°; γ = 105.2°; Z = 16. Characteristic feature of the structure are isolated [InO4]5?-tetraeder. The Madelung Part of Lattice Energy, MAPLE, the Mean Fictive Ionic Radii, MEFIR, Effective Coordination Numbers, ECoN, and Charge Distribution, VADI, are calculated.  相似文献   

6.
News about Binuclear Oxoferrates(II) [1] . By “reaction with the wall” of the Fe-cylinders used here we synthesized the new oxoferrates(II) Cs6[Fe2O5], Cs3.5Rb2.5[Fe2O5] and Rb4K2[Fe2O5] in the form of red single crystals. The structure elucidation via four-circle-diffractometer data shows that the new oxoferrates(II) are isotypic with Cs2(Cs0.35K1.65)K2 [Fe2O5]. In the structure we have isolated binuclear groups [(O1)2Fe—O(2)—Fe(O1)2]6?. Structure refinements is possible in the centrosymmetrial space group C2/m as well as in the space groups C2 and Cm without centre of symmetry. The existence of two further oxoferrates(II) Cs6?xRbx[Fe2O5] and Cs6?xKx[Fe2O5] which can be described as solid solutions was confirmed by power-data.  相似文献   

7.
Synthesis, Crystal Structures, and Absorption Spectra of the New “Cupriosilicates”: K6[CuSi2O8] and Rb4[CuSi2O7] K6[CuSi2O8] and Rb4[CuSi2O7] were obtained by annealing intimate mixtures of K2O and Rb2O, respectively, CuO and SiO2 in sealed Ag cylinders at 500°C as transparent greenish-blue single crystals. The structure solution (IPDS-data Mo Kα; K6[CuSi2O8]: 1292 F2(hkl), R1 = 0.059; wR2 = 0.103 and Rb4[CuSi2O7]: 763 F2(hkl), R1 = 0.049; wR2 = 0.114) confirms the space group P1 for both compounds. K6[CuSi2O8]: a = 619.4(2); b = 665.5(2); c = 753.0(2) pm; α = 83.66(3); β = 87.71(3); γ = 70.19(3)°; Z = 1. Rb4[CuSi2O7]: a = 631.9(9); b = 707.5(10); c = 715.2(6) pm; α = 114.2(1); β = 100.7(1); γ = 107.9(1)°; Z = 1. The Madelung Part of the Lattice Energy, MAPLE, Effective Coordination Numbers, ECoN, these calculated via Mean Effective Ionic Radii, MEFIR, are given. The absorption spectra of K6[CuSi2O8] and Rb4[CuSi2O7] are discussed in terms of the Angular Overlap Model, AOM.  相似文献   

8.
New Oxides with the “Butterfly-Motive”: Rb6[Fe2O5] and K6[Fe2O5] Rb6[Fe2O5] and K6[Fe2O5] were obtained for the first time by annealing intimate mixtures of “Rb6CdO4” with CdO (molar ratio 1 : 1.1) and KO0.48 with CdO (molar ratio 5.9 : 1) respectively in closed Fe-cylinders. Determination and refinement of the crystalstructure confirms the space group C2/m (four-circle-diffractometer data). Rb6[Fe2O5]: Ag Kα , 720 out of 1220 Io(hkl), R = 9.68%, Rw = 6.09%; a = 718.9pm, b = 1183.1 pm, c = 695.4pm, β = 95.05°, Z = 2; K6[Fe2O5]: MoKα , 1214 Out of 12141o(hkl), R = 3.20070, Rw = 2.48%, a = 691.21 pm, b = 1142.78pm, c = 665.50pm, β = 93.82°, Z = 2. The binuclear unit [O2FeOFeO2]6? already known to be planar with oxoferrates(II) now was observed to be angular here and closely related to Na6[Be2O5].  相似文献   

9.
“Fragmentation” and “Aggregation” on Lead Oxides. On the Oligooxoplumbate(IV) K2Li6[Pb2O8] For the first time, the dinuclear Oxoplumbate(IV) K2Li6[Pb2O8] has been prepared as transparent colourless single crystals by heating mixtures of K2PbO3, Li2O, and “PbO2” with K:Li:Pb = 1:3:1 e. g. [Ag-cylinders, sealed under vacuum in Supremax-glass ampoule, 660°C, 120 d]. The structure determination verifies the space group P1 with a = 6.9720(9), b = 5.9252(6), c = 5.9312(7) Å, α = 88.05(1)°, β = 107.94(1)°, γ = 107.30(1)°; dx = 4.95 g · cm?3, dpyk = 4.91 g · cm?3; Z = 1, [2107 symmetry independent hkl, fourcircle-diffractometer Philips PW 1100, ω—2Θ—scan, MoKα, R = 5.07%, Rw = 4.59%, absorption not considered]. The structure is characterized by the group [Pb2O8] — two edge connected (equatorial/apical) trigonal bipyramids — that is observed for the first time. Several ways of synthesis are given. The Madelung Part of Lattice Energy, MAPLE, Effective Coordination Numbers, ECoN, these via Mean Effective Ionic Radii, MEFIR, are calculated.  相似文献   

10.
On the Constitution of ‘KPbO2’ Transparent, orangered single crystals of K2Pb2O4 have been obtained by heating mixtures of K2O2 and PbO (K:Pb = 1:1) [Ag-cylinders, 560°C, 40 d, after cooling (15°C/h)]. The space group is P1 , a = 1295.94(9), b = 753.35(7), c = 697.12(8) pm, α = 118.00(1)°, β = 106.15(1)°, γ = 93.44(1)°, Z = 4, dx = 6.573 und dpyk = 6.54 g · cm3. The structure is characterized by rutilanalogous chains of edge-connected [PbO6] octahedra along [001] according to [PbO4/2O2/1] = PbO4. On both sides of such a chain there are respectively three O2?, which belong to two octahedra, alternating capped with Pb2+ or not capped, corresponding to [PbO4]Pb2[PbO4]□2… = Pb2O4. Those capped chains are held together by K(1)…K(4), each of them with C.N. 6. The order of the chains corresponds to the motive of a closest packing. The Madelung Part of Lattice Energy, MAPLE, Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, are calculated and discussed.  相似文献   

11.
About Cs2Li2[GeO4] By heating of a well-ground mixture of the binary oxides CsO0.55, Li2O and GeO2 (Cs:Li:Ge=2,6:2,2:1; Ni-tube; 600 °C; 49d) we got single crystals of Cs2Li2[GeO4] for the first time. Cs2Li2[GeO4] is isotypic to Rb2Li2[MO4] [M = Si, Ti, Ge] [2] and Cs2Li2[MO4] (M = Si, Ti) [3]: according to this Cs2Li2[GeO4] crystallizes triclinic, in the spacegroup P1 with a = 968.7(4) pm, b = 586.0(2) pm, c = 571.4(2) pm, α = 92.71(4)°, β = 110.95(3)° and γ = 94.34(4)° (Guinier-Simon data), Z = 2. The structure was determined by four-circle diffractometer data (Ag? Kα ; 2381 Io(hkl); R = 8,4%; Rw = 5.0%), parameters see text. Further the Madelung Part of Lattice Energy (MAPLE), Effective Coordination Numbers (ECoN) and the Mean Fictive Ionic Radii (MEFIR), have been calculated.  相似文献   

12.
A New Oxouranate(VI): K2Li4[UO6]. With a Remark about Rb2Li4[UO6] and Cs2Li4[UO6] For the first time K2Li4UO6 has been prepared by an exchange reaction of α-Li6UO6 with K2O [K:U = 2.0:1, sealed au-tube; 750°C; 30 d single crystals; 680°C, 10 d powder]. The irregular shaped single crystals, which are of yellow color and sensitive to moisture crystallize in P3 m1 (Z = 1) with a = 619.27(5), c = 533.76(6) pm. The structure determination (PW 1100, AgKα R = 4.80%, Rw = 4.81% for 220 unique reflexions) reveals a new type of structure. The characteristic elements are the isolated group [UO6] and the C.N. = 12 for K+. While Li(1) has a nearly regular square of 4 O2? as coordination polyhedron, Li(2) is octahedrally surrounded. The Madelung Part of Lattice Energy (MAPLE) is calculated and discussed. In addition to K2Li4[UO6] the new oxides Rb2Li4[UO6] and Cs2Li4[UO6] are prepared as pale yellow powders which are little sensitive to moisture (both: au-tube, 680°C, 10 d). According to powder datas both compounds are isotypic with K2Li4[UO6] [Rb2Li4[UO6]: a = 622.91(5), c = 535.93(6) pm; Cs2Li4[UO6]: a = 626.70(6), c = 539.92(6) pm].  相似文献   

13.
Cs4[IrO4], a New Iridate with Planar Anion [IrO4]4? For the first time we obtained black single crystals of Cs4[IrO4] by heating intimate mixtures of CsO0.52 and IrO2 (molar ratio Cs : Ir = 4.30 : 1.00; “Ag-bomb”, 740°C/86 d). Cs4[IrO4] crystallizes monocline, C 2/m, with a = 1031.66(8) pm, b = 671.61(4) pm, c = 660.44(6) pm, b? = 108.118(7)° and Z = 2 in the K4[IrO4]-type. The structure has been determined by four-circle-diffractometer data (PW 1100 from Phillips, Ag? Kα , graphite) with 841 I0(hkl) with I ≥ 3s?(F) (from 947 I0(hkl) out of 3529 measured reflexes). The Madelung Part of Lattice Energy, MAPLE, Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, are calculated and discussed.  相似文献   

14.
The First Diniobate with ‘Isolated’ Anions: KLi4[NbO5]=K2Li8[Nb2O10] [1] . By heating of well ground mixtures of the binary oxides [K2O, Li2O, Nb2O5, K:Li:Nb=1.1:4.4:1, Pt-tube, 1100°C, 3d] colourless, triclinic single crystals of KLi4NbO5 have been prepared for the first time: space group P1 (Nr. 2) with a=816.9(2) pm, b=592.2(2) pm, c=589.7(2) pm, α=121.00(2)º, β=91.78(2)°, γ=99.23(2)°, Z=2. The crystal structure was solved by four-cycle diffractometer data [Mo-Kα , 1386 from 1386 Io(hkl), R=3.4%, Rw=2.6%], parameters see text. Characteristic for this structure are “isolated” groups of [Nb2O10] and the tetrahedral coordination of Li(1), Li(2), and Li(3). Li(4) has a tetragonal-pyramidal coordination. The structural relations are deduced by Schlegel Diagrams. The Madelung Part of Lattice Energy, MAPLE, the Effective Coordination Numbers, ECoN and the charge distribution have been calculated and discussed.  相似文献   

15.
On Quaternary Oxoplumbates(IV). On the Knowledge of Rb2Li14[Pb3O14] and Cs2Li14[Pb3O14] For the first time, Rb2Li14[Pb3O14] and Cs2Li14[Pb3O14] have been prepared by heating of mixtures of Li2O, β-?PbO2”? and Rb2PbO3, Cs2PbO3 respectively with Li:Pb:A = 14:3:2, (A = Rb, Cs). [Ag-cylinders, sealed under vacuum in Duran-glass ampoule, 590 and 550°C, 40 d, powder (650°C, 200 d, single crystals of Rb2Li14[Pb3O14])]. Rb2Li14[Pb3O14] is nearly colourless with ivory nuance, Cs2Li14[Pb3O14] is pale yellow. According to powder and single crystal investigations, both are isotypic with K2Li14[Pb3O14]. Structure refinement of Rb2Li14[Pb3O14]: 1015 symmetry independent reflexions, four-circle-diffraktometer PW 1100 (Fa. Philips), ω-scan, MoKα, R = 5.73%, RW = 5.33%, absorption not considered, space group Immm with a = 1284.71(9), b = 793.90(4), c = 727,35(5) pm, dx-ray = 4.99 g · cm?3, dpyc = 5.01 g · cm?3, Z = 2. Cs2Li14[Pb3O14]: a = 1295.28(12), b = 796.69(8), c = 732.44(7) pm, dx-ray = 5.31 g · cm?3, dpyc = 5.28 g · cm?3, Z = 2. The Madelung Part of Lattice Energy, MAPLE, Effective Coordination Numbers, ECoN, these via Mean Effective Ionic Radii, MEFIR, are calculated.  相似文献   

16.
The First Tetraferrate(III): K14[Fe4O13] For the first time K14[Fe4O13] was obtained by annealing intimate mixtures of K2O and LiFeO2 (molar ratio 2.2:1) in closed Ni-cylinders (6 months, 610°C) in the form of yellow-brown single crystals. The structure determination (four circle diffractometer, MoKα, 3377 of 3377 Io(hkl); R = 4,52%, Rw = 2,53%) confirms the space group P21/c; a = 677.9, b = 2956.2, c = 672,1 pm, β = 120.31°, Z = 2. Essential part of the structure are tetranuclear [Fe4O13]14?-groups, oligomers consisting of four corner-sharing FeO4-tetrahedra. Within the structure these groups are connected by two crystallographically distinct K-particles thus forming bands which are arranged according to a ?closest packing of bands”? interconnected by the rest of the K-particles. The structure is described via Schlegel-diagrams. It is isotypic with Na14[Al4O13].  相似文献   

17.
Cs6[TeMo6O24] · 2 Te(OH)6 · 4 H2O – A Telluric Acid-rich Inclusion Compound Single crystals of Cs6[TeMo6O24] · 2 Te(OH)6 · 4 H2O have been grown from aqueous solution. It crystallizes triclinically in space group P1 with Z = 1, a = 1 086.6(1), b = 1 095.6(1), c = 1 105.5(1) pm, α = 118.83(1), β = 106.22(1) and γ = 100.00(1)°. X-ray structure determination (5 755 reflections, 251 parameters, Rg = 0.0355) revealed an infinite chain consisting of hydrogen bonded (OH …? O 259.4(5) – 267.4(6) pm) Te(OH)6 molecules and [TeMo6O24]6? anions to be the Prominent structural feature. Further hydrogen bonds between neighbouring Te(OH)6 molecules connect these chains to yield a two-dimensionally infinite arrangement.  相似文献   

18.
The First Oxocobaltate(II) with Dinuclear Anion: Rb2Na4[Co2O5] and K2Na4[Co2O5] By heating of well ground mixtures of the binary oxides [A2O, Na2O, ?CoO”?, A:Na:Co = 1.00:2.00:1, (A = K, Rb); Ag-tube, 600°C, 14 d] we obtained Rb2Na4[Co2O5] and K2Na4[Co2O5] rough, transparent, red single crystals. We find a new type of structure with the anion [O2CoOCoO2]6?. Space group P42/mnm; a = 634.4 pm, c = 1030.3 pm, Z = 2 (A = K) a = 647.6 pm, c = 1021.1 pm, Z = 2 (A = Rb); four-circle diffractometer data; MoKα -radiation; 360 from 364 I0(hkl), R = 4.34%, Rw = 3.54% (A = K); 361 from 366 I0(hkl), R = 6.54%, Rw = 2.70% (A = Rb). The anion is planar, the CN of Co is 3. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, are calculated and discussed.  相似文献   

19.
Inhaltsübersicht. Erstmals wurden klar durchscheinende, orange-farbene Einkristalle von Cs2Li14[Tb3O14] aus Cs2TbO3 und Li2O (Tb: Li = 1:5) dargestellt [550°C, 21 d, verschlossenes AuRohr]. Es liegt der K2Li14[Pb3O14]-Typ vor [Vierkreisdiffraktometerdaten, PW 1100, MoKä-Strahlung, 660 Io(hkl), R = 4,8%, Rw = 3,4%, Immm, a = 1293,5(8), b = 792,6(3), c = 740,4(3) pm, Z = 2, d = 4,65]. Ebenfalls neu wurde K2Li14[Zr3O14] in Form farbloser Einkristalle durch Tempern inniger Gemenge von K2O, Li2O und ZrO2 (K: Li: Zr = 1:4:1,5) dargestellt [900°C, 14 d, geschlossene Ni-Bombe] und röntgenographisch untersucht. Die Strukturverfeinerung [612 Io(hkl), Vierkreisdiffraktometerdaten, PW 1100, MoKα-Strahlung, R = 5,9%, Rw = 5,3%, Immm, a = 1244,6, b = 776,4, c = 724,3 pm, Z = 2] bestätigt die Isotypie mit K2Li14[Pb3O14]. Der Madelunganteil der Gitterenergie, MAPLE, Effektive Koordinationszahlen, ECoN, diese über Mittlere Effektive Ionenradien, MEFIR, wurden berechnet. Für die nun bekannten Vertreter dieses Typs wurde ein Isotypievergleich vorgenommen. New Compounds of the K2Li14[Pb3O14] Type: Cs2Li14[Tb8O14] and K2Li14[Zr3O14] For the first time Cs2Li14[Tb3O14] has been prepared as orange single crystals from Cs2TbO3 and Li2O (Tb: Li = 1:5) [550°C, 21 d, sealed Au-Tube]. Structure Refinement [four-circle diffractometer data, PW 1100, MoKα radiation, 660 Io(hkl), R = 4.8%, Rw = 3.4%, Immm, a = 1293.5(8), b = 792.6(3), c = 740.4(3) pm, Z = 2, d = 4.65] confirms isotypy with K2Li14[Pb3O14]. K2Li14[Zr3O14] has also been prepared as colorless single crystals from K2O, Li2O, and ZrO2 (K: Li: Zr = 1:4:1.5), [900°C, 14 d, closed Ni-cylinder] and investigated by x-ray [612 Io(hkl), four-circle diffractometer data, PW 1100, MoKα radiation, R = 5.9%, Rw = 5.3%, Immm, a = 1244.6, b = 776.4, c = 724.3 pm, Z = 2]. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, the latter derived from Mean Effective Fictive Ionic Radii, MEFIR, are calculated. A detailed comparison of the structures is carried out.  相似文献   

20.
Chains consisting of Rings: K5{Li[Ge2O7]} — the First ‘Litho-Digermanate’ By heating of a well-ground mixture of the binary oxides KO0.55, Li2O and GeO2 (K: Li: Ge = 6.1 : 2.2 : 2; Ni-tube; 600°C; 49 d) we obtained for the first time single crystals of K5{Li[Ge2O7]}. This ‘lithodigermanate’ represents a completely new type of structure: monoclinic, space group P21/c, a = 624.9(2) pm, b = 1586.6(8) pm; c = 1058.3(6) pm and β = 109.38(4)°; Guinier-Simon data, Z = 4. The structure was solved by four-circle diffractometer data [Siemens AED II, Mo? Kα ; 2872 Io(hkl); R = 4.5%, Rw = 3.3%], parameters see text. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these calculated via Mean Fictive Ionic Radii, MEFIR, as well as charge distribution CHARDI, are calculated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号