共查询到20条相似文献,搜索用时 16 毫秒
1.
James C. W. Chien Bor-Ping Wang 《Journal of polymer science. Part A, Polymer chemistry》1988,26(11):3089-3102
Ethylene was polymerized by Cp2ZrCl2–methylaluminoxane (MAO) catalysts where a portion of the MAO was replaced with trimethyl aluminum (TMA). At a total Al to Zr ratio of 1070, there is neither appreciable loss of productivity nor change in polymerization profile for TMA/MAO ≤ 10. The productivity is reduced only by two- to three-fold for TMA/MAO ≤ 100 accompanied by a 10 min induction period. Aging of this catalyst did not affect the induction period, but improves its productivity. The kinetic isotope effect for radiolabeling with tritiated methanol is 2.0. About 40% of the Zr is active for the catalyst with {99 [TMA] + 1[MAO]} to Zr ratio of 100. The rate constants for propagation and chain transfer were obtained. The mechanisms for the mixed TMA and MAO cocatalyst system are discussed. The results of this work have important practical significance. MAO is a hazardous material to synthesize and only in low yields. The replacement of > 90% of MAO with TMA represents a substantial saving since as much as 0.1M of the former is commonly used for a polymerization. 相似文献
2.
Ulrich Bueschges James C. W. Chien 《Journal of polymer science. Part A, Polymer chemistry》1989,27(5):1525-1538
The reactions occurring between the components of metallocene and methylaluminoxane (MAO) catalyst leading to the reduction of the former were studied by electron paramagnetic resonance (EPR). At low Al/Zr ratios, CpZrCl3 (Cp = η5-cyclopentadienyl) was reduced to simple trivalent Zr species (g = 1.998, a(91Zr) = 12.3 G) without other superhyperfine splittings. At higher Al/Zr ratios the reactions proceed further to form two CpZr(III) hydrides (g = 1.991, a(H) = 5.5 G; and g = 2.00, a(H) = 3 G). Two CpTi(III) hydrides were also produced by the reaction of MAO with CpTiCl3 (g = 1.989, a(H) = 7.4 G, a(Ti) = 8 G; and, g = 1.995, a(H) = 4.5 G, a(Ti) = 8 G). In the case of Cp*TiCl3 (Cp* = η5-pentamethyl cyclopentadienyl) initially a multitude of paramagnetic species were formed. After long reaction time the final products show EPR features consistent with two η3: η4-(1,2,3-trimethyl-4,5-dimethylene cyclopentadienyl)hydrido Ti(III) species: the abundant one with g = 1.999, (H, sextet) = 9.5 G, a(Ti) = 9.5 G, and a weaker one of g = 1.975, a(H) = 4.8 G. All the five protons of these species and as well as those in the Cp hydrido complexes of Ti and Zr undergo facile H? D exchanges with D2. MAO is important in the formation of these hydrides because they are not formed by trimethyl aluminum reduction. The presence of tetrahydrofuran suppresses the hydride formation. The possible structures for the hydrido species and reactions producing them are discussed. 相似文献
3.
James C. W. Chien Bernhard Rieger H. Martin Herzog 《Journal of polymer science. Part A, Polymer chemistry》1990,28(11):2907-2915
Polypropylenes obtained with the homogeneous racemic ethylene bis(indenyl) zirconium dichloride/methyl-aluminoxane catalyst were fractionated by solvent extraction. The IR absorbance ratios, A998/A973 and A841/A973, were found to vary linearly with the homosteric sequence population, [m m m m] and [m m]. These results are compared with the results of a similar study by Burfield and Loi on commercial and laboratory polypropylenes of the conventional types. 相似文献
4.
James C. W. Chien Abbas Razavi 《Journal of polymer science. Part A, Polymer chemistry》1988,26(9):2369-2380
Bis(neomenthyl cyclopentadienyl)zirconium dichloride/methyl aluminoxane (η5-(NMCp)2ZrCl2/MAO) catalyst has been investigated for ethylene polymerization. About 51% of the Zr forms active sites more or less instantaneously according to quenching with tritiated methanol. There is an initial drop of rate of polymerization, Rp, of about 30% which remains constant thereafter. The catalytic activity increases monotonically with temperature; it is proportional to [MAO]1.75 at a constant [Zr] = 1.5 μM and proportional to [Zr]?1.2 at a constant [MAO] = 64.5 mM. At very large [MAO]/[Zr], the catalyst has extremely high activity; κp = 5 × 103 (Ms)?1 at 50°C. There is also facile chain transfer to aluminum, κ = 0.14 s?1 at 50°C. Both κp and κ are about 30 times greater than the corresponding rate constants for MgCl2 supported TiCl3 catalysts. The TiCl3/MgCl2 and (NMCp)2/MAO catalysts have nearly the same activation energy for propagation (ca. 7 kcal/mol?1). The higher activity of the latter is due to its larger preexponential factor in κp. The dependence of catalytic activity on the [MAO]/[Zr] ratio may be explained by rapid association-dissociation equilibria of MAO involving acid-base and/or electron deficient bridge complexation. 相似文献
5.
James C. W. Chien Youliang Hu 《Journal of polymer science. Part A, Polymer chemistry》1987,25(10):2881-2892
Hydrogen has been found earlier to increase the initial rate of polymerization by MgCl2/EB/PC/AlEt3/TiCl4-AlEt3/MPT, CW-catalyst (+Bi, +Be) (EB, ethyl benzoate; PC, p-cresol; MPT, methyl-p-toluate), but decays more rapidly as compared to polymerizations in the absence of H2. In this study the effect of H2 was studied when either the internal Lewis base, EB Bi, or the external Lewis base, MPT Be, or both are deleted from the CW-catalyst. H2 does not affect the stereospecificity of all the catalysts, but causes a slight increase of polymer yield, whereas the yield is virtually unchanged by H2 for the catalysts activated with Be. Unlike the catalyst (+Bi, +Be) where H2 increases active site concentrations [Ti*] about threefold, it affects [Ti*] negligibly when Be is absent. The rate constants of propagation is about the same with or without H2 for the CW-catalyst (+Bi, –Be) or (–Bi, –Be); the same statement can be said about the rate constant of chain transfer with AlEt3 or with H2. Hydrogen increases the rate of catalyst site deactivation for the various catalysts in the order of(+Bi, +Be) > (–Bi, –Be) > (+Bi, –Be). 相似文献
6.
James C. W. Chien Jiun-Chen Wu Chi-I. Kuo 《Journal of polymer science. Part A, Polymer chemistry》1983,21(3):725-736
Fourier transform infrared (FTIR) spectra were obtained for a typical MgCl2-supported, high-mileage catalyst for propylene polymerization. When ball-milling MgCl2 with ethyl benzoate (EB), the latter is incorporated into the support (I) by Lewis acid-base complexation involving both oxygen atoms of the ester. Reaction of (I) with p-cresol (PC) resulted in a material (II) that contains all the characteristic IR bands of PC. The reaction of (II) that contains all the characteristic IR bands of PC. The reaction of (II) with AlEt3 (TEA) resulted in (III) whose spectrum supports the reaction observed by product analysis and NMR spectroscopy. There was no evidence of any reaction between TEA and EB. Further reaction of (III) with an excess of TiCl4 caused substantial removal of the p-cresol moiety as shown by the diminution of its characteristic bands. Finally, activation with 3TEA-1MT (methyl-p-toluate) complexes gave spectra that revealed the presence of MT in the activated catalyst without any visage of p-cresol moiety. The nondestructive FTIR method, however, is not quantitative. Quantitative analysis of the organic components in the support materials (I), (II), and (III) and the catalysts was accomplished by hydrolysis of the inorganic components, extraction with ether, and analysis by gas chromatography. The results are in good agreement with composition deducted from elemental analysis and substantiate the FTIR conclusions. 相似文献
7.
8.
The use of metallocenes in many stoichiometric and catalytic processes has been the impetus for the development of new organometallic complexes, especially those containing early transition metals. The formation of coordinative unsaturated complexes using allylic, benzamidinate and aminopyridine families is presented. The synthesis and structural parameters of the new complexes, their activation and use in the polymerization of alpha-olefins and dienes, in the dehydrogenative coupling of silanes and in the hydroamination reactions comprise the objectives of this review. 相似文献
9.
James C. W. Chien Youliang Hu James C. Vizzini 《Journal of polymer science. Part A, Polymer chemistry》1990,28(2):273-284
CH-type catalysts were prepared by reacting MgCl2 · ROH, where ROH is 2-ethyl hexanol (EH), (R)-2-octanol (R-20), and (S)-2-octanol (S-20), with TiCl4 in the presence of di-i-butyl phthalate (BP), di-i-butyl terephthalate (BT), (-)-dimenthyl phthalate (MP), or (-)-dimenthyl terephthalate (MT). The MT catalysts were found to incorporate 8.9 to 13% Ti whereas the BP catalysts contain only 1.9 to 2.6% Ti. Comparison of the CH(EH, BP) and CH(EH, MT) catalysts showed that they have about equal number of isospecific active sites per gram of catalyst and the same rate constants of propagation for their nonspecific sites, however, the isospecific sites in the latter are less active by comparison. Consequently, the CH(EH, BP) catalysts is five times more active than the CH(EH, MT) catalysts and produces polypropylene which is 97% isotactic (reflux n-heptane insoluble) as compared to 84.7% for the latter. The catalysts derived from 2-octanols are much less active than the corresponding catalysts prepared with 2-ethyl hexanol due to lack of reactivity with phthalic anhydride which permits excessive incorporation of TiCl4 to form nonstereospecific catalytic sites as well as inactive Ti species. 相似文献
10.
James C. W. Chien Chi-I. Kuo 《Journal of polymer science. Part A, Polymer chemistry》1986,24(11):2707-2727
The effect of H2 on propylene polymerization initiated by a MgCl2/EB/PC/AlEt3/TiCl4–3 AlEt3/MPT catalyst was studied. Hydrogen increases significantly the initial rate during the early stage of the polymerization to give a higher yield of polymer than reactions without H2. But H2 reduces the yield toward the latter stages so that the net effect on the total yield can be quite small. There is no appreciable effect of H2 on either the isotacticity index or polydispersity of the products. It decreases molecular weight proportional to (pH2)1/2. The chain transfer by H2 resulted in a decrease of total metal polymer bond concentration with time of polymerization. The rate constants of hydrogen chain transfer for the two kinds of isospecific and nonspecific sites are = 5.1 × 10?3, = 2.7 × 10?3, = 7.5 × 10?3, = 4.4 × 10?3, in units of torr1/2 sec?1 at 50°. Hydrogen assists in the deactivation of the catalytic sites as does propylene; rates of the former and the latter vary with (pH2)1/2 and [C3H6]1/2, respectively, with k = (12.1 ± 0.9) M?1 torr?1/2 sec?1 and k = (65.3 ± 3.3) M?3/2 sec?1 at 50° and A/T = 167. The mechanism for deactivation of catalytic sites are discussed. 相似文献
11.
James C. W. Chien Takashi Nozaki 《Journal of polymer science. Part A, Polymer chemistry》1991,29(4):505-514
Hydrogen (pH2 = 72 torr) increases the rate of propylene polymerization by a MgCl2/ethyl benzoate/p-cresol/AlEt3/TiCl4-AlEt3/methyl-p-toluate catalyst (CW-catalyst) by two-to three-fold which corresponds closely with the increase in the number of active sites as counted by radiolabeling with tritiated methanol. The oxidation states of titanium in decene polymerizations by the CW-catalyst were determined as a function of time of polymerization (tp). In the absence of H2, all [Ti+n] for n = 2, 3, 4 remain constant during a batch polymerization. In the presence of H2 and within 5 min of tp, [Ti+2] decreases by an amount, corresponding to 15% of the total titanium and [Ti+3] increases by the same amount, while [Ti+4] is not changed. Therefore, three-fourths of the H2 activation result from oxidative addition processes. The remaining one-fourth of the H2 activation may be attributed to the activation of previously deactivated Ti+3 ions by hydrogenolysis. Monomer converts some of the EPR silent Ti+3 sites to EPR observable species resulting in their activation. 相似文献
12.
L. A. M. Rodriguez H. M. van Looy 《Journal of polymer science. Part A, Polymer chemistry》1966,4(8):1951-1969
The determination of the number of sites active in the polymerization of ethylene on the surface of α-TiCl3–Al(CH3)3 dry catalysts leads to the conclusion that this number is small in comparison to the total surface of the catalyst. Qualitatively this conclusion is also reached by two other independent methods. Infrared spectra of the catalyst before and after polymerization do not show a change in the type of bonds present in the surface. Electron microscopy proves that no active sites are formed on the basal plane of the α-TiCl3 which constitutes 95% of the total surface. The results strongly favor the lateral faces of α-TiCl3 as the preferred location of active centers. The lateral faces contain chlorine vacancies and incompletely coordinated titanium atoms. This must then be the essential conditions for the formation of active centers. The propagation of the polymer chain has been repeatedly shown to follow an insertion mechanism. The active site, therefore, necessarily contains a metal–carbon bond. The study of catalysts derived from TiCl3CH3 leads to the conclusion that a Ti? C bond on titanium of incomplete coordination is the active species in these cases. The alkylation of surface titanium atoms was proven to be an intermediate step in the catalyst formation from TiCl3 and AlR3. Survival of titanium–alkyl bonds on the lateral faces, where titanium atoms are incompletely coordinated explains best, in the light of our data, the activity of Ziegler-Natta catalysts. Coordination of aluminum alkyl compounds in or around the active center probably complicates the structure of the active centers. 相似文献
13.
14.
James C. W. Chien Siegfried Weber Youliang Hu 《Journal of polymer science. Part A, Polymer chemistry》1989,27(5):1499-1514
A precise method for the determinations of Ti+2, Ti+3 and Ti+4 was developed. The CW-procatalyst before activation contains mostly Ti+4 ions with 6% Ti+3 and 4% Ti+2 ions. Activation with AlEt3 alone at room temperature reduced all the titaniums to lower valence states consisting of 71% Ti+3 and 29% Ti+2. Reduction is incomplete when methyl-p-toluate was present as external Lewis base during activation: at 25°C the distribution of Ti+4 : Ti+3 : Ti+2 is 36% : 25% : 38%; the distribution at 50°C is 37% : 22% : 40%. Aging of the activated catalyst caused little or no changes in the distribution of [Ti+n]; whereas the catalytic activity decays rapidly with aging. The aged catalysts have polymerization activity comparable to the decreased activity of the catalyst during a polymerization. The [Ti+n] was determined for the CW-catalyst during the course of a decene polymerization; they were found to be Ti+4 : Ti+3 : Ti+2 = 30% : 27% : 43%, which did not change with polymerization time. These results suggest that the reducibility of Ti+4 species by AlEt3 or 3AlEt3/MPT to different valence states is predicated by their structures. These species do not undergo further changes in their oxidation states during either aging or polymerization. Their decays probably involve nonreductive metathesis reactions like those known for zirconium alkyls. Possible structures for the stereospecific and nonspecific sites are proposed. 相似文献
15.
16.
James C. W. Chien Chi-I Kuo 《Journal of polymer science. Part A, Polymer chemistry》1985,23(3):731-760
Two methods were used in an attempt to determine by radioquenching the active site concentration, [Ti*], in a MgCl2 supported high activity catalyst. For the reactions of tritium labelled methanol, the kinetic isotope effects were first determined: kH/kT = 1.63 for the total polymer and 1.67 for the isotactic polypropylene fraction. Polymerizations were quenched with an excess of isotopic CH3OH after various lengths of time, at different A/T (amount of AlEt3 with 0.33 equivalent of methyl-p-toluate to amount of Ti in the catalyst) ratios, and temperatures. From the known specific activity of tritium in CH3OH and radioassay of the polymer, value of the total metal polymer bond, [MPB], can be obtained. [MPB] increases linearly with polymerization time. Extrapolation to t = 0 gives [MPB]0, which should be close to [Ti*] because chain transfer with aluminum alkyls to produce Al–P bonds is negligible during very early stage of the polymerization. The values of [MPB]0 range from 7–30% of the total Ti; the number of MPB is nearly equally distributed in the amorphous and isotactic fractions of polypropylene in most runs. The rate of incorporation of radioactive CO into polymers produced by the MgCl2 supported high mileage catalyst is far slower than that claimed by some investigators for TiCl3 type catalysts. There is an initial rapid phase of incorporation of CO which lasts for about 1 hr of contact time. The subsequent rate of CO incorporation steadily declines, yet there is no constant maximum value of radioactivity even after 48 h of reaction in the absence of monomer. Radioquenching of polymerizations with CO was also performed at several temperatures and A/T ratios. In all cases, the maximum [Ti–P] was reached after 30–40 min of polymerization, whereas the maximum rates of polymerization, Rp,m, occurred within 3–10 min. In fact, the rate of polymerization decays to a small fraction of Rp,m after 30–40 min. Furthermore, this maximum value of [Ti–P] remains constant until the end of polymerization (t = 90 min). Therefore, isotopic CO is not reacting with the initially formed active sites Ti1*, but only with those sites, Ti2*, which predominate during the later stage of polymerization. 相似文献
17.
Shigeo Tazuke Seizo Okamura 《Journal of polymer science. Part A, Polymer chemistry》1969,7(2):715-724
Photopolymerization of acrylonitrile (AN), an acceptor monomer, was found to be accelerated in the presence of isobutyl vinyl ether (IBVE), a donor monomer. The propagation is completed by a radical mechanism as judged by copolymer compositions; in contrast to the N-vinylcarbazole–AN system studied previously. This photopolymerization system is entirely stable if kept in the dark. The comparison of the relation between Rp and [IBVE]/[AN] ratio in the monomer feed found for the spontaneous photopolymerization with that for radical polymerization initiated by azobisisobutylonitrile in the dark leads to the conclusion that the rate of photoinitiation is enhanced by the interaction between AN and IBVE, whereas the propagation step by a radical mechanism is retarded by increasing concentration of IBVE. The contact charge-transfer complex between IBVE and AN was confirmed by electronic spectroscopy of the polymerization system, which showed photosensitization by charge-transfer interaction. The spectroscopic study of other weak donor–weak acceptor systems is also discussed. 相似文献
18.
We report here the design, synthesis, and characterization of new (dioxo)Mo(VI) epoxidation catalysts based on monoanionic tridentate ligands. Two important features distinguish these catalysts from those previously reported. First, their coordination environment remains well-defined during the epoxidation reaction. Second, the ligand design does not permit simultaneous coordination of olefin and alkyl hydroperoxide. Based on the study of these new catalysts, we conclude that direct oxygen atom transfer from coordinated alkyl peroxide to olefin remains the simplest mechanism consistent with the available data. We discuss literature discrepancies in this regard. 相似文献
19.
Reactions of ozone with simple olefins have been studied between 6 and 800 mtorr total pressure in a 220-m3 reactor. Rate constants for the removal of ozone by an excess of olefin in the presence of 150 mtorr oxygen were determined over the temperature range 280 to 360° K by continuous optical absorption measurements at 2537 Å. The technique was tested by measuring the rate constants k1 and k2 of the reactions (1) NO + O3 → NO2 + O2 and (2) NO2 + O3 rarr; NO3 + O2 which are known from the literature. The results for NO, NO2, C2H4, C3H6, 2-butene (mixture of the isomers), 1,3→butadiene, isobutene, and 1,1 -difluoro-ethylene are 1.7 × 10?1 4 (290°K), 3.24 × 10?17 (289°K), 1.2 × 10?1 4 exp (–4.95 ± 0.20/RT), 1.1 × 10?1 4 exp (–3.91 ± 0.20/RT), 0.94 × 10?1 4 exp ( –2.28 ± 0.15/RT), 5.45 ± 10?1 4 exp ( –5.33 ± 0.20/RT), 1.8 ×10?17 (283°K), and 8 × 10?20 cm3/molecule ·s(290°K). Productformation from the ozone–propylene reaction was studied by a mass spectrometric technique. The stoichiometry of the reaction is near unity in the presence of molecular oxygen. 相似文献
20.
James C. W. Chien Bor-Ping Wang 《Journal of polymer science. Part A, Polymer chemistry》1990,28(1):15-38
The ethylene polymerization by Cp2ZrCl2/MAO (Cp = η5: cyclopentadienyl; MAO = methyl aluminoxane) and CpZrCl3/MAO have been studied. The MW and PD (= M w/M w) of polymers obtained after 2.5-60 min are the same, which indicate short chain lifetime. The values of rate constants for Cp2ZrCl2 at 70°C are: kp = 168?1670 (M s)?1 and ktrA1 = 0.012-0.81 s?1 depending upon [Zr] and [MAO,] ktrβ = 0.28 s?1, and ktrH = 0.2 M?1 torr?1/2 s?1. These chain transfer rate constant values are two to three orders of magnitude greater than the corresponding values found for MgCl2 supported titanium catalysts. One significant difference between the heterogeneous and homogeneous catalysts is that the former decays according to an apparent second order kinetics, whereas the latter decay is simple first order at 0°C and biphasic first order at higher temperatures. The productivity of the catalysts depends weekly on temperature while the MW decreases strongly with increase of temperature above 30°C. All the active species were formed upon mixing Cp2ZrCl2 with MAO while it took up to 20 min for the CpZnCl3/MAO system. The productivity of the former increase more strongly with the decrease of [Zr] than the latter. Otherwise, the two catalyst systems have all their kinetic parameters differing less than a factor of two. 相似文献