首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Na3Al2Nb34O64 and Na (Si, Nb) Nb10O19. Cluster Compounds with Isolated Nb6-Octahedra Hexagonal ormolu coloured plates of the new compounds Na3Al2Nb34O64 ( I ) and Na(Si, Nb)Nb10O19 ( II ) were prepared by heating pellets of NaF, Al2O3, NbO2 and NbO (3:1:8:2) and NaF, NbO2 and NbO (1:4:2), respectively, at approx. 850°C. I was contained in a sealed gold capsule, II in a silica tube. The Si incorporated in II originates from the container material. Both compounds crystallize in R 3 , I with a = 784.4(1), c = 7065(1) pm, Z = 3 and II with a = 784.1(1), c = 4221.8(5) pm, Z = 6. I and II represent new structure types. They contain the same characteristic structural units, namely discrete Nb6O12 clusters (dNb–Nb = 283 ± 4 pm) and Nb2O10 units with Nb–Nb dumbells (dNb–Nb ≈? 269 pm) in edgesharing coordination octahedra. In addition NbO6 octahedra containing Nb in the oxidation state + 5 and NaO12 cube-octahedra occur in both compounds besides AlO4 and SiO4 tetrahedra in I and II , respectively. The structures can be described in terms of a common closepacking of O and Na atoms together with Nb6 octahedra.  相似文献   

2.
《Solid State Sciences》1999,1(7-8):567-575
The mixed valence state niobium compound MnNb3O6 was found while studying phase formations in the system MnO-Nb2O5-NbO. It is isostructural with AxNb3O6, x ≤ 1 and A = Na, Ca. Single crystals were obtained by heating MnC2O4 · 2H2O and Nb2O5 in a flow of H2 at 1300 °C. Monophasic samples were also prepared by heating stoichiometric mixtures of MnO, Nb2O5 and Nb in niobium ampoules under Ar(g) at 1100 °C. The crystal structure of MnNb3O6 (Immm, Z = 4, a = 7.1057(5), b = 10.1420(6), c = 6.5341(5) Å) was refined, using singlecrystal MoKα X-ray diffraction data, to a weighted R value of 0.018 for 329 unique reflections. The structure contains undulating layers of NbO6 octahedra of the type α2[NbO6/2]in the ac-plane, with the octahedra sharing edges along [001]and corners along [100]. Between the layers there are columns along [001]of edge-sharing square MnO8 prisms alternating with columns containing Nb2O8 clusters with an Nb-Nb distance of 2.6163(5) Å. The magnetic susceptibility shows a Curie-Weiss behaviour: χM = C/(T+θ) with θ ≈ −22 K and μeff = 6.0(1) μB for T ≥ ca. 35 K, with a small deviation from this dependence at lower temperatures, indicating Mn2+ ions with localised magnetic moments and antiferromagnetic interactions.  相似文献   

3.
Colourless triclinic single crystals of Na4(NH4)2[TeMo6O24] · 16H2O were grown in aqueous solution (space group P1 , a = 1 075.3(1), b = 1 074.2(1), c = 1 089.8(1) pm, = 96.259(9), β = 118.556(7), γ = 113.355(8)°, Z = 1, 295 K, 311 parameters, 3 689 reflections, Rg = 0.0197). There are two crystallographically independent Na+ cations. Na(1) is coordinated octahedrally by four water molecules and two oxygen atoms of the centrosymmetric [TeMo6O24]6? anion. Na(2) is bound to five water molecules in a considerably distorted trigonally bipyramidal fashion. These bipyramids are linked with NH4+ by hydrogen bonds to yield centrosymmetric cluster cations consisting of two NH4+ and two Na(H2O)5+ each. Hydrogen bonds envolving all except one (O(10)) of the oxygen atoms of the [TeMo6O24]6? anion as almost equivalent proton acceptors regardless of their bonding mode to Te and Mo, respectively, establish further connections to NH4+ and the water of crystallization.  相似文献   

4.
The First Diniobate with ‘Isolated’ Anions: KLi4[NbO5]=K2Li8[Nb2O10] [1] . By heating of well ground mixtures of the binary oxides [K2O, Li2O, Nb2O5, K:Li:Nb=1.1:4.4:1, Pt-tube, 1100°C, 3d] colourless, triclinic single crystals of KLi4NbO5 have been prepared for the first time: space group P1 (Nr. 2) with a=816.9(2) pm, b=592.2(2) pm, c=589.7(2) pm, α=121.00(2)º, β=91.78(2)°, γ=99.23(2)°, Z=2. The crystal structure was solved by four-cycle diffractometer data [Mo-Kα , 1386 from 1386 Io(hkl), R=3.4%, Rw=2.6%], parameters see text. Characteristic for this structure are “isolated” groups of [Nb2O10] and the tetrahedral coordination of Li(1), Li(2), and Li(3). Li(4) has a tetragonal-pyramidal coordination. The structural relations are deduced by Schlegel Diagrams. The Madelung Part of Lattice Energy, MAPLE, the Effective Coordination Numbers, ECoN and the charge distribution have been calculated and discussed.  相似文献   

5.
Novel Suboxide Clusters [O5Ba18] in the Crystal Structures of Ba21M2O5 (M = Si, Ge) The compounds Ba21M2O5 (M = Si, Ge) crystallize in the cubic system with space group Fd3m, lattice constants 2 038.3(10) pm (Si), 2 039.8(9) pm (Ge) resp. and Z = 8. The crystal structure contains isolated Si/Ge atoms coordinated by barium atoms in an icosahedral arrangement. The oxygen atoms are situated in the centers of barium octahedra, four of which share common faces with an additional central octahedron. The novel clusters [O5Ba18] in principal are related to those in the crystal structures of the binary Cs/Rb suboxides.  相似文献   

6.
The Cluster Azides M2[Nb6Cl12(N3)6]·(H2O)4—x (M = Ca, Sr, Ba) The isotypic cluster compounds M2[Nb6Cl12(N3)6] · (H2O)4—x (M = Ca (1) , M = Sr (2) and M = Ba (3) ) have been synthesized by the reaction of an aequeous solution of Nb6Cl14 with M(N3)2. 1 , 2 and 3 crystallize in the space group Fd3¯ (No. 227) with the lattice constants a = 1990.03(23), 2015.60(12) and 2043, 64(11) pm, respectively. All compounds contain isolated 16e clusters whose terminal positions are all occupied by orientationally disordered azide ligands.  相似文献   

7.
Bis(disulfido)bridged NbIV cluster oxalate complexes [Nb2(S2)2(C2O4)4]4– were prepared by ligand substitution reaction from the aqua ion [Nb2(μ‐S2)2(H2O)8]4+ and isolated as K4[Nb2(S2)2(C2O4)4] · 6 H2O ( 1 ), (NH4)6[Nb2(S2)2(C2O4)4](C2O4) ( 2 ) and Cs4[Nb2(S2)2(C2O4)4] · 4 H2O ( 3 ). The crystal structures of 1 and 2 were determined. The crystals of 1 belong to the space group P1, a = 720.94(7) pm, b = 983.64(10) pm, c = 1071.45(10) pm, α = 109.812(1)°, β = 91.586(2)°, γ = 105.257(2)°. The crystals of 2 are monoclinic, space group C2/c, a = 1567.9(2) pm, b = 1906.6(3) pm, c = 3000.9(4) pm, β = 95.502(2)°. The packing in 2 shows alternating layers of cluster anions and of ammonium/uncoordinated oxalates perpendicular to the [1 0 1] direction. Vibration spectra, electrochemistry and thermogravimetric properties of the complexes are also discussed.  相似文献   

8.
[PtIn6][GaO4]2 – The First Oxide Containing [PtIn6] Octahedra. Preparation, Characterisation, and Rietveld Refinement – With a Remark to the Solid Solution Series [PtIn6][GaO4]2‐x[InO4]x (0 < x ≤ 1) The novel oxides [PtIn6][GaO4]2–x[InO4]x (0 < x ≤ 1) are formed by heating intimate mixtures of Pt, In, In2O3, and Ga2O3 in the corresponding stoichiometric ratio in corundum crucibles under an atmosphere of argon (1220 K, 70 h). The compounds are black, stable in air at room temperature, reveal a semiconducting behaviour, and decompose only in oxidizing acids. X‐ray powder diffraction patterns can be indexed by assuming a face centered cubic unit cell with lattice parameters ranging from a = 1001.3(1) pm (x = 0) to a = 1009.3(1) pm (x = 1). According to a Rietveld refinement [PtIn6][GaO4]2 crystallizes isotypic to the mineral Pentlandite (Fm3m, Z = 4, R(profile) = 6.11%, R(intensity) = 3.95%). The characteristic building units are isolated [PtIn6]10+ octahedra which are linked via [GaO4]5– tetrahedra to a three dimensional framework. Starting from [PtIn6][GaO4]2 the substitution of Ga3+ ions by larger In3+ ions leads to the formation of a solid solution series according to the general formula [PtIn6][GaO4]2–x[InO4]x and becomes apparent in an increase of the lattice parameter.  相似文献   

9.
New compounds of the general formula A4[Nb6Cl12(NCS)6](H2O)4 (A = K, Rb, NH4) were synthesized from Nb6Cl14 and ASCN in aqueous solutions. X-ray structure refinements were performed on single-crystal data of the three compounds. They are isotypic and crystallize with the space group P1 (Z = 1) and the lattice parameters: a = 877.9(3) pm, b = 1176.6(3) pm, c = 1187.0(3) pm, α = 114.29(1)°, β = 98.96(2)°, γ = 100.91(2)° for K4[Nb6Cl12(NCS)6](H2O)4 ( 1 ); a = 887.6(3) pm, b = 1184.0(4) pm, c = 1195.4(4) pm, α = 114.95(2)°, β = 98.84(2)°, γ = 101.31(2)° for Rb4[Nb6Cl12(NCS)6](H2O)4 ( 2 ) and a = 886.0(4) pm, b = 1181.1(6) pm, c = 1183.9(6) pm, α = 114.49(2)°, β = 99.48(3)°, γ = 101.53(1)° for (NH4)4[Nb6Cl12(NCS)6](H2O)4 ( 3 ). Each centrosymmetric [Nb6Cl12(NCS)6]4? ion of the isotypic compounds contains six terminal thiocyanate groups being bound to the corners of the octahedral niobium cluster through the nitrogen atoms (dNb? N = 221.5(6)–224.3(6) pm, bond angles Nb? N? C 168.6(5)–176.4(6)°). The [Nb6Cl12(NCS)6]4? ions are linked via A? S and A? Cl interactions with the A cations. Half of the cations occur to be disordered along two crystallographic sites.  相似文献   

10.
Thermochemical Investigations in the System V/Nb/O. II. Chemical Transport in the Region V2O5/Nb2O5/VO2/NbO2 Transport experiments were used to support the phase relationships of the V2O5/Nb2O5/VO2/NbO2 system, which were established by annealing experiments of powder mixtures. The phase relations were studied in the NbO2-rich region of the system by means of X-ray and ESMA methods. The NbO2-rich section is characterized by the following two phase and three phase regions: Two phase region: V3Nb9O29/rutile mixed crystal V1?xNbxO2 Two phase region: BI-mixed crystal/VxNb1?xO2 Three phase region: V3Nb9O29/solubility limit LG1 (V1?xNbxO2)/BI-mixed crystal Three phase region: solubility limit LG1 (V1?xNbxO2)/BI-mixed crystal/solubility limit LG2 (VxNb1?xO2). The composition of the solubility limits LG1 and LG2 was ascertained by means of ESMA-investigation: LG1: 57.5 ± 5 mol% NbO2/43.5 ± 5 mol% VO2 LG2: 22.5 ± 5 mol% NbO2/78.5 ± 5 mol% VO2?  相似文献   

11.
Li6[TeMo6O24] · 18 H2O is triclinic (space group P1 , a = 1 041.7(1), b = 1 058.6(1), c = 1 070.8(1) pm, α = 61.08(1), β = 60.44(1), γ = 73.95(1)°). Single crystal X-ray structure analysis (Z = 1, 295 K, 317 parameters, 3 973 reflections, Rg = 0.0250) revealed an infinite branched chain of edge-sharing Li coordination polyhedra to be the prominent structural feature. One of the four crystallographically independent Li+ is coordinated octahedrally. The coordination polyhedra of the remaining Li+ are distorted trigonal bipyramids. Only three unique oxygen atoms (O(9), O(10), O(12)) of the centrosymmetric [TeMo6O24]6? anion are bound to Li+. The further positions in the coordination spheres of the Li+ are occupied by water molecules. Intermolecular hydrogen bonds involve mainly oxygen atoms of the [TeMo6O24]6? anion as nearly equivalent proton acceptors without regard to their different bonding modes to Te and Mo, respectively. Li6[TeMo6O24] · Te(OH)6 · 18 H2O crystallizes monoclinically in space group P21/n with Z = 4, a = 994.1(3), b = 2 344.8(10), c = 1 764.9(4) pm, and β = 91.36(4)°. Single crystal structure analysis with least squares refinement of 627 parameters (5 900 reflections, 295 K) converged to Rg = 0.0324. There are six unique Li+ cations. The coordination polyhedra of Li(1), Li(2), Li(3), and Li(4) are linked by common edges to yield an eight membered centrosymmetric strand. The coordination polyhedra of the remaining two Li+ sites (Li(5), Li(6)) are connected to a dimeric unit via a common corner. All oxygen atoms of the Te(OH)6 molecule are involved in the coordination of Li+. However, only three oxygen atoms (O(13), O(18), O(23)) of the [TeMo6O24]6? anion which lacks crystallographic symmetry are involved in the coordination of Li+. The oxygen atoms of the anion act as proton acceptors in hydrogen bonds of predominantly medium strength. Te(OH)6 molecules and [TeMo6O24]6? anions connected by strong hydrogen bonds form an infinite chain.  相似文献   

12.
The Crystal Structure of the Hydrated Cyano Complexes NMe4MnII[(Mn, Cr)III(CN)6] · 3 H2O and NMe4Cd[MIII(CN)6] · 3 H2O (MIII = Fe, Co): Compounds Related to Prussian Blue The crystal structures of the isotypic tetragonal compounds (space group I4, Z = 10) NMe4MnII · [(Mn, Cr)III(CN)6] · 3 H2O (a = 1653.2(4), c = 1728.8(6) pm), NMe4Cd[Fe(CN)6] · 3 H2O (a = 1642.7(1), c = 1733.1(1) pm) and NMe4Cd[Co(CN)6] · 3 H2O (a = 1632.1(2), c = 1722.4(3) pm) were determined by X‐rays. They exhibit ⊥ c cyanobridged layers of octahedra [MIII(CN)6] and [MIIN4(OH2)2], which punctually are interconnected also || c to yield altogether a spaceous framework. The MII atoms at the positions linking into the third dimension are only five‐coordinated and form square pyramids [MIIN5] with angles N–MII–N near 104° and distances of Mn–N: 1 × 214, 4 × 219 pm; Cd–N: 1 × 220 resp. 222, 4 × 226 resp. 228 pm. Further details and structural relations within the family of Prussian Blue are reported and discussed.  相似文献   

13.
3-Chloro-1,2,3,4-tetraphenylcyclobutenyl-Ennea-chloro-μ-Oxo-di-Niobate(V), [C4Cl(Ph)4][Nb2OCl9]?. Synthesis and Crystal Structure The title compound yields from a one step reaction of niobium pentachloride and niobium oxide trichloride with diphenyl acetylene in dichloro methane, forming dark green crystals. The new complex is characterized by the i.r. spectrum and a crystal structure determination by X-ray methods. The compound crystallizes triclinic in the space group P1 with two formula units per unit cell (2253 independent observed reflexions, R = 4.7%). The lattice dimensions are a = 1199, b = 1034, c = 1453 pm; α = 87.0°, β = 108.6°, γ = 96.6°. The cyclobutenyl cation forms an almost planar C4-ring with two pairs of neighbouring C? C bonds of 139 pm and 153 pm. The anion [Nb2OCl9]? displays a nearly linear NbONb axis (bond angle 174°) in which the NbO bond lengths are 176 pm and 208 pm. Two anions are linked via asymmetric chloro bridges with Nb? Cl bond lengths of 248 pm and 270 pm to form a centrosymmetric dimer.  相似文献   

14.
Preparation, Crystal Structure and Electron Microscopic Investigation of UNb6O16 – a New Niobium-rich Phase in the System U/Nb/O Powdery UNb6O16 was produced by heating (1 000°C or 1 100°C; evacuated silica tube) mixed powders of UO2, NbO2 and Nb2O5 (1:2:2). Single-crystals of UNb6O16 were obtained by chemical transport in a small temperature gradient (1 000°C → 990°C; transport agent NH4Cl). The lattice constants are a = 22 339(4) Å; b = 3.7750(6) Å; c = 7.249(3) Å; β = 97.61(3)° and Z = 2. The structure determination (space group C2) let to R = 0.026 (Rw = 0.026). Eight oxygen atoms surround U4+ like a trans-bis-capped octahedron, Nb4+ and Nb5+ are coordinated distorted octahedraly. The structure was checked and the occupation of the positions O8 and O9 was clarified with the program MAPLE4 [3]. A through focus series of high resolution transmission electron microscopic images was obtained which is in acceptable agreement with images calculated on the basis of the multi-slice method.  相似文献   

15.
The electronic structure of a new type of polyoxometalate [Ti12Nb6O44]10? has been investigated using density functional theory (DFT). The calculations represent that the LUMO in fully oxidized [Ti12Nb6O44]10? delocalizes among the titanium (Ti) and niobium (Nb). Therefore, both Ti and Nb have the probability to accept extra electron when [Ti12Nb6O44]10? as catalyst is reduced, which has been reinforced by the spin density for the monoreduced specie [Ti12Nb6O44]11?. Three kinds of possible protonated isomers [HTi12Nb6O44]9? are discussed. The results reveal that the preferred protonation sites correspond to bridging oxygens Nb? O? Ti. In addition, the calculation of electronic spectrum shows that there is an obvious intramolecular charge transfer from oxygen to metal. The solvent effects were also considered in the calculations by using a conductor‐like screening model (COSMO) of solvation with the solvent‐excluding surface. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
Rubidium und Caesium Compounds with the Isopolyanion [Ta6O19]8– – Synthesis, Crystal Structures, Thermogravimetric and Vibrational Spectrocopic Analysis of the Oxotantalates A8[Ta6O19] · n H2O (A = Rb, Cs; n = 0, 4, 14) The compounds A8[Ta6O19] · n H2O (A = Rb, Cs; n = 0, 4, 14) contain the isopoly anion [Ta6O19]8–, which consists of six [TaO6] octahedra connected via corners to form a large octahedron. They transform into each other by reversible hydratation/dehydratation processes, as shown from thermoanalytic measurements (TG/DSC), and show also structural similarities. Cs8[Ta6O19] (tetragonal, I4/m, a = 985.9(1) pm, c = 1403.3(1) pm, Z = 2), the isotypic phases A8[Ta6O19] · 14 H2O (A = Rb/Cs; monoclinic, P21/n, a = 1031.30(6)/1055.4(1) pm, b = 1590.72(9)/1614.9(6) pm, c = 1150.43(6)/1171.4(1) pm, β = 100.060(1)/99.97(2)°, Z = 2) and Rb8[Ta6O19] · 4 H2O (monoclinic, C2/c, a = 1216.9(4) pm, b = 1459.2(5) pm, c = 1414.7(4) pm, β = 90.734(6)°, Z = 4) have been characterised on the basis of single crystal x‐ray data. Furthermore the RAMAN spectra allow a detailled comparison of the hexatantalate ions in the four compounds.  相似文献   

17.
The reactivity of aryl monocarboxylic acids (benzoic, 1- or 2-naphtoic, 4’-methylbiphenyl-4-carboxylic, and anthracene-9-carboxylic acids) as complexing agents for the ethoxide niobium(V) (Nb(OEt)5 precursor has been investigated. A total of eight coordination complexes were isolated with distinct niobium(V) nuclearities as well as carboxylate complexation states. The use of benzoic acid gives a tetranuclear core Nb42-O)4(L)4(OEt)8] (L=benzoate ( 1 )) with four Nb−(μ2-O)−Nb linkages in a square plane configuration. A similar tetramer, 7 , was obtained with 2-naphtoic acid by using a 55 % humid atmosphere synthetic route. Two types of dinuclear brick were identified with one central Nb−(μ2-O)−Nb linkage; they differ in their complexation state, with one bridging carboxylate ([Nb22-O)(μ2-OEt)(L)(OEt)6], with L=1-naphtoate ( 3 ) or anthracene-9-carboxylate ( 5 )) or two bridging carboxylate groups ([Nb22-O)(L)2(OEt)6], with L=4’-methylbiphenyl-4-carboxylic ( 4 ) or anthracene-9-carboxylate ( 6 )). An octanuclear moiety [Nb82-O)12(L)81-L)4−x(OEt)4+x] (with L=2-naphtoate, x=0 or 2; 8 ) was obtained by using a solvothermal route in acetonitrile; it has a cubic configuration with niobium centers at each node, linked by 12 μ2-O groups. The formation of the niobium oxo clusters was characterized by infrared and liquid 1H NMR spectroscopy in order to analyze the esterification reaction, which induces the release of water molecules that further react through oxolation with niobium atoms, in different {Nb2O}, {Nb4O4} and {Nb8O12} nuclearities.  相似文献   

18.
IrIn7GeO8 = [IrIn6](GeO4)(InO4) and Compounds of the Solid Solution Series [IrIn6](Ge1+xIn1?4x/3O8) (0 ≤ x ≤ 0.75): First Oxides containing [IrIn6] Octahedra The low valent indiumoxides IrIn7GeO8 = [IrIn6](GeO4)(InO4) and [IrIn6](Ge1+xIn1?4x/3O8) (0 x ≤ 0.75) are formed by heating intimate mixtures of Ir, In, In2O3 and GeO2 in corundum crucibles under an atmosphere of argon (1420 K, 70 h). The compounds are black and semiconducting. X‐ray powder diffraction patterns can be indexed on the basis of a face centered cubic unit cell with lattice parameters ranging from a = 1012.3(1) pm (x = 0) to a = 1007.3(1) pm (x = 0.75). Characteristic building units in [IrIn6](Ge1+xIn1?4x/3O8) are isolated [IrIn6]9+ octahedra with short Ir‐In distances of 253.5 pm, which are linked via [GeO4]4? and [InO4]5? tetrahedra to a three dimensional framework. Starting from IrIn7GeO8 = [IrIn6](GeO4)(InO4), the isoelectronic substitution of 4 In3+ ions by 3 Ge4+ ions and one Ge‐vacancy leads to the formation of a solid solution series [IrIn6](GeO4)1+x(O4)x/3(InO4)1?4x/3, which shows a slight decrease in the cubic lattice parameter with increasing x. According to Rietveld refinements the structure of [IrIn6](GeO4)(InO4) exhibits a statistical distribution of the tetrahedrally coordinated Ge and In atoms ( , R(prof.) = 4.4 %, R(int.) = 2.5 %). The crystal and electronic structures of [IrIn6](GeO4)(InO4) are discussed on the basis of first principles electronic structure calculations.  相似文献   

19.
Oxo-phosphoraneiminato Complexes of Molybdenum and Tungsten. Crystal Structures of [Mo(O)2(NPPh3)2] and [WO(NPPh3)3]2[W6O19] The dioxo-phosphoraneiminato complexes [Mo(O)2(NPPh3)2] ( 1 ) and [W(O)2(NPPh3)2] ( 2 ) originate from hydrolysis of the nitrido complexes [MN(NPPh3)3] (M = Mo, W). They form colourless crystals, which are characterized by IR and NMR spectroscopy as well as by mass spectrometry. According to the crystal structure analysis of 1 (space group Fdd2, Z = 8; lattice dimensions at –83 °C: a = 1953.3(1), b = 3275.8(3), c = 953.4(1) pm) there are monomeric molecules with tetrahedrally coordinated molybdenum atoms. The distances MoO of 171.2 pm and MoN of 185.9 pm correspond to double bonds. In dichloromethane solution 2 undergoes further hydrolysis with colourless crystals of [WO(NPPh3)3]2[W6O19] ( 3 ) originating, which are characterized crystallographically (space group Pbcn, Z = 4; lattice dimensions at –50 °C: a = 3225.1(6), b = 1803.6(3), c = 1811.9(3) pm). 3 consists of cations [WO(NPPh3)3]+ with tetrahedrally coordinated tungsten atoms and of the known [W6O19]2– anions. The tungsten atoms of the cations show distances WO of 171.8 pm and WN of 182 pm which correspond to double bonds as in 1 .  相似文献   

20.
X-ray photoelectron spectroscopy and diffraction (XPS and XPD) are applied to analyze oxygen-induced surface structures on the Nb(110) face formed due to oxygen segregation from the crystal bulk on thermal annealing to 2000 K in vacuum and/or oxygen adsorption in situ at temperatures above 1100 K. The Nb3d, O1s electronic states and valence band spectra of the NbO x /Nb(110) surface are studied by XPS, and the results are compared with data for NbO, NbO2, and Nb2O5 oxides. It is shown that niobium atoms entering the composition of surface oxide structures on Nb(110), from the standpoint of the nearest environment and chemical bond, are similar to metal states in NbO. The NbO x layer thickness is estimated to be 0.5 nm. Two chemically inequivalent oxygen states are distinguished on Nb(110), which are, presumably, atomic chemisorbed oxygen on the parts of the clean surface of the Nb monolayer with hexagonal packing and oxygen in the composition of NbO x -like linear clusters on Nb(110). A model of the NbO x /Nb(110) surface takes into account a distortion of the structure of NbO x clusters: a periodic vertical shift of metal atoms in Nb-chains and changes in Nb-O bond angles. Original Russian Text Copyright ? 2009 by M. V. Kuznetsov, A. S. Razinkin, and E. V. Shalaeva __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 3, pp. 536–543, May–June, 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号