共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Robert W. Irving 《Discrete Mathematics》1974,9(3):251-264
The generalised Ramsey number R(G1, G2,..., Gk) is defined as the smallest integer n such that, if the edges of Kn, the complete graph on n vertices, are coloured using k colours C1, C2,..., Ck, then for some i(1≤i≤k) there is a subgraph Gi of Kn with all of its edges colour Ci. When G1=G2=...,Gk=G, we use the more compact notation Rk(G).The generalised Ramsey numbers Rk(G) are investigated for all graphs G having at most four vertices (and no isolates). This extends the work of Chvátal and Harary, who made this investigation in the case k=2. 相似文献
3.
4.
A table of the size Ramsey number or the restricted size Ramsey number for all pairs of graphs with at most four vertices and no isolated vertices is given. 相似文献
5.
J.C. Bermond 《Discrete Mathematics》1974,9(4):313-321
Given k directed graphs G1,…,Gk the Ramsey number R(G1,…, Gk) is the smallest integer n such that for any partition (U1,…,Uk) of the arcs of the complete symmetric directed graph Kn, there exists an integer i such that the partial graph generated by U1 contains G1 as a subgraph. In the article we give a necessary and sufficient condition for the existence of Ramsey numbers, and, when they exist an upper bound function. We also give exact values for some classes of graphs. Our main result is: , where G is a hamltonian directed graph with p vertices and denotes the directed path of length nt 相似文献
6.
Johannes H. Hattingh 《Journal of Graph Theory》1990,14(4):437-441
The irredundant Ramsey number s(m, n) is the smallest p such that in every two-coloring of the edges of Kp using colors red (R) and blue (B), either the blue graph contains an m-element irredundant set or the red graph contains an n-element irredundant set. We develop techniques to obtain upper bounds for irredundant Ramsey numbers of the form s(3, n) and prove that 18 ≤ s(3,7) ≤ 19. 相似文献
7.
S. A. Burr 《Journal of Graph Theory》1983,7(1):57-69
The (generalized) Ramsey number r(G) is determined for all 113 graphs with no more than six lines and no isolated points. While few proofs are given, information is given which should be sufficient to reconstruct them in most cases. 相似文献
8.
We estimate Ramsey numbers for bipartite graphs with small bandwidth and bounded maximum degree. In particular we determine asymptotically the two and three color Ramsey numbers for grid graphs. More generally, we determine asymptotically the two color Ramsey number for bipartite graphs with small bandwidth and bounded maximum degree and the three color Ramsey number for such graphs with the additional assumption that the bipartite graph is balanced. 相似文献
9.
10.
Let R(G) denote the minimum integer N such that for every bicoloring of the edges of KN, at least one of the monochromatic subgraphs contains G as a subgraph. We show that for every positive integer d and each γ,0 < γ < 1, there exists k = k(d,γ) such that for every bipartite graph G = (W,U;E) with the maximum degree of vertices in W at most d and , . This answers a question of Trotter. We give also a weaker bound on the Ramsey numbers of graphs whose set of vertices of degree at least d + 1 is independent. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 198–204, 2001 相似文献
11.
12.
Given two graphs G and H, let f(G,H) denote the minimum integer n such that in every coloring of the edges of Kn, there is either a copy of G with all edges having the same color or a copy of H with all edges having different colors. We show that f(G,H) is finite iff G is a star or H is acyclic. If S and T are trees with s and t edges, respectively, we show that 1+s(t?2)/2≤f(S,T)≤(s?1)(t2+3t). Using constructions from design theory, we establish the exact values, lying near (s?1)(t?1), for f(S,T) when S and T are certain paths or star‐like trees. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 1–16, 2003 相似文献
13.
Halina Bielak 《Discrete Mathematics》2009,309(22):6446-6449
P. Erdös, R.J. Faudree, C.C. Rousseau and R.H. Schelp [P. Erdös, R.J. Faudree, C.C. Rousseau, R.H. Schelp, The size Ramsey number, Period. Math. Hungar. 9 (1978) 145-161] studied the asymptotic behaviour of for certain graphs G,H. In this paper there will be given a lower bound for the diagonal size Ramsey number of Kn,n,n. The result is a generalization of a theorem for Kn,n given by P. Erdös and C.C. Rousseau [P. Erdös, C.C. Rousseau, The size Ramsey numbers of a complete bipartite graph, Discrete Math. 113 (1993) 259-262].Moreover, an open question for bounds for size Ramsey number of each n-regular graph of order n+t for t>n−1 is posed. 相似文献
14.
The ramsey number of a connected nonbipartite graph G with a sufficiently long path emanating from one of its points is found to be (n?1)(χ?1)+s, where n is the number of points of G, χ is the chromatic number of G, and s is the minimum possible number of points in a color class in a χ-coloring of the points of G. 相似文献
15.
《Discrete Mathematics》2004,274(1-3):125-135
The classical Ramsey number r(m,n) can be defined as the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, β(B)⩾m or β(R)⩾n, where β(G) denotes the independence number of a graph G. We define the upper domination Ramsey number u(m,n) as the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, Γ(B)⩾m or Γ(R)⩾n, where Γ(G) is the maximum cardinality of a minimal dominating set of a graph G. The mixed domination Ramsey number v(m,n) is defined to be the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, Γ(B)⩾m or β(R)⩾n. Since β(G)⩽Γ(G) for every graph G, u(m,n)⩽v(m,n)⩽r(m,n). We develop techniques to obtain upper bounds for upper domination Ramsey numbers of the form u(3,n) and mixed domination Ramsey numbers of the form v(3,n). We show that u(3,3)=v(3,3)=6, u(3,4)=8, v(3,4)=9, u(3,5)=v(3,5)=12 and u(3,6)=v(3,6)=15. 相似文献
16.
17.
Lingsheng Shi 《Journal of Graph Theory》2005,50(3):175-185
The Ramsey number R(G1,G2) of two graphs G1 and G2 is the least integer p so that either a graph G of order p contains a copy of G1 or its complement Gc contains a copy of G2. In 1973, Burr and Erd?s offered a total of $25 for settling the conjecture that there is a constant c = c(d) so that R(G,G)≤ c|V(G)| for all d‐degenerate graphs G, i.e., the Ramsey numbers grow linearly for d‐degenerate graphs. We show in this paper that the Ramsey numbers grow linearly for degenerate graphs versus some sparser graphs, arrangeable graphs, and crowns for example. This implies that the Ramsey numbers grow linearly for degenerate graphs versus graphs with bounded maximum degree, planar graphs, or graphs without containing any topological minor of a fixed clique, etc. © 2005 Wiley Periodicals, Inc. J Graph Theory 相似文献
18.
For given graphs G and H, the Ramsey number R(G,H) is the smallest natural number n such that for every graph F of order n: either F contains G or the complement of F contains H. In this paper we investigate the Ramsey number of a disjoint union of graphs . For any natural integer k, we contain a general upper bound, R(kG,H)?R(G,H)+(k-1)|V(G)|. We also show that if m=2n-4, 2n-8 or 2n-6, then R(kSn,Wm)=R(Sn,Wm)+(k-1)n. Furthermore, if |Gi|>(|Gi|-|Gi+1|)(χ(H)-1) and R(Gi,H)=(χ(H)-1)(|Gi|-1)+1, for each i, then . 相似文献
19.
The study of the CO‐irredundant Ramsey numbers t(n1, ···, nk) is initiated. It is shown that several values and bounds for these numbers may be obtained from the well‐studied generalized graph Ramsey numbers and the values of t(4, 5), t(4, 6) and t(3, 3, m) are calculated. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 258–268, 2000 相似文献
20.