首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2,5-Divinyltetrahydropyran (1) can be isomerized using a ruthenium trichloride- triphenylphosphine catalyst to give 3,4-dihydro-3-vinyl-6-ethyl-2H-pyran (2) and 3,4-dihydro-3- ethylidene-6-ethyl-2H-pyran (3). These products give a variety of rearranged products on treatment with acid. The course of the reactions can be controlled by reaction conditions to give 4-ethyltoluene (5) or 3-hydroxymethyl-1-octen-6-one (4) from 2, and 3,4-dihydro-2-methyl-3-methylene-(6-ethyl-2H- pyran (7), 2,3,4-trimethyl-2-cyclohexen-1-one (8), or 3-hydroxymethyl-2-octen-6-one (6) from 3. All of these products (4–8) can be explained as arising by the initial opening of the dihydropyran to generate an unsaturated hydroxy ketone which then cyclizes to carbocyclic products.  相似文献   

2.
Reaction of Meldrum's acid with 3,4-bis(chloromethyl)-2,5-dimethylthiophene (1) or 3,4-bis(bromomethyl)-2,5-dimethylthiophene (2) produces the kinetically favored C,O-dialkylation product, 1,3,7,7-tetramethyl-4H,10H-6,8,9-trioxa-2-thiabenz[f]azulen-5-one (4). Recrystallization of 4 from refluxing methanol results in the methanolysis product 5-(4-methoxymethyl-2,5-dimethylthiophen-3-ylmethyl)-2,2-dimethyl[1,3]dioxane-4,6-dione (5). Attempts to isomerize 4 to the thermodynamically favored C,C-dialkylation product, 1,3-dimethyl-5,6-dihydro-4H-cyclopenta[c]thiophene(2-spiro-5)2,2-dimethyl-4,6-dione (8), result in the formation of 1,3-dimethyl-7,8-dihydro-4H-thieno[3,4-c]oxepin-6-one (6). The transformation occurs via a retro-Diels-Alder elimination of acetone followed by hydrolysis and decarboxylation of the resulting ketene. The ketene is trapped by tert-butyl alcohol, furnishing 1,3-dimethyl-6-oxo-7,8-dihydro-4H,6H-thieno[3,4-c]oxepine-7-carboxylic acid tert-butyl ester (7). All compounds are characterized spectroscopically as well as by X-ray crystallography of products 4-7.  相似文献   

3.
The first total synthesis of (4E,6E)-1,7-bis(3,4-dihydroxyphenyl)-hepta-4,6-dien-3-one and an alternative synthesis of (4E,6E)-1,7-bis(4-hydroxyphenyl)-hepta-4,6-dien-3-one, two natural diarylheptanoids, mainly based on Claisen–Schmidt condensation were described. The crucial steps of the syntheses were the condensation of OH-protected 4-aryl-2-butanones with OH-protected 3-aryl-acrylaldehydes by the in situ enamination and then deprotection of OH groups to give the corresponding natural diarylheptanoids.  相似文献   

4.
The cyclic nitrones 7-chloro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one 4-oxide ( 5a ) and 1,3-dihydro-7-methylthio-5-phenyl-2H-1,4-benzodiazepin-2-one 4-oxide ( 5b ) are photoisomerized to readily isolable oxaziridines, 7-chloro-4,5-epoxy-5-phenyl-1,3,4–5-tetrahydro-2H-1,4-benzodiazepin-2-one ( 6a ) and 4,5-epoxy-5-phenyl-1,3,4,5-tetrahydro-7-methylthio-2H-1,4-benzo-diazepin-2-one ( 6b ). Oxaziridine 6b upon further irradiation gave ring expansion and ring contraction products, 4,6-dihydro-2-phenyl-9-methylthio-5H-1,3,6-benzoxadiazocin-5-one ( 7b ) and 4-benzoyl-3,4-dihydro-6-methylthioquinoxalin-2(1H)-one ( 8b ) respectively. The ring contraction product, 4-benzoyl-6-chloro-3,4-dihydroquinoxalin-2(1H)-one ( 8a ), was obtained from irradiation of oxaziridine 6a .  相似文献   

5.
The cyclization reactions, carried out in strongly- or weakly-basic media, are described. Sometimes, 7-amino-2,3-dihydro-3-hydroxymethyl-5H-thiazolo[3,2-a]pyrimidin-5-one is separated out, together with 8-amino-3,4-dihydro-3-hydroxy-2H,6H-pyrimido[2,1-b][1,3]thiazin-6-one, as the principal product. A mechanism of reaction, during which the cyclizating agents are changed into oxirane derivatives, is proposed. The results of single-crystal X-ray investigations on 8-amino-3,4-dihydro-3-hydroxy-7-nitroso-2H,6H-pyrimido[2,1-b][1,3]thiazin-6-one (R = 0.035 for 1013 reflections), and on 7-hydroxymethyl-6,7-dihydrothiazolo[3,2-a][1,2,3]triazolo[4,5-d]pyrimidin-9(1H)-one (R = 0.027 for 1607 reflections) are reported.  相似文献   

6.
Six new alkaloids, broussonetines W, X, M1, U1, J3, and J2 (1-6) were isolated from the branches of Broussonetia kazinoki SIEB. (Moraceae) as minor constituents. They were formulated as (2R,3R,4R,5R)-2-hydroxy-methyl-3,4-dihydroxy-5-17-(cyclohexy-2-on-1(6)-enyl)heptyllpyrrolidine (1), (2R,3S,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-17-(cyclohexy-2-on-1(6)-enyl)heptyl]pyrrolidine-4-O-beta-D-glucopyranoside (2), (2R,3R,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(9R)-9,13-dihydroxytridecyl]- pyrrolidine (3), (2S,3S,4S)-2-hydroxymethyl-3,4-dihydroxy-5-(10-oxo-13-hydroxytridecyl)-5- pyrroline (4), (2R)-2-[(IS,2S)-1,2-dihydroxy-8-1(2R,3R,4R,5R)-5-(2-hydroxymethyl-3,4-dihydroxy-1-acetylpyrrolidinyl)loctyl]piperidine (5), (2R)-2-[(1S,2S)-1,2-dihydroxy-8-[(2R,3R, 4R,5R)-5-(2-hydroxymethy]-3,4-dihydroxypyrrolidinyl)]octyl]piperidine (6).  相似文献   

7.
Four new pyrrolidine alkaloids, broussonetines R, S, T, and V and a new pyrroline alkaloid, broussonetine U were isolated from the branches of Broussonetia kazinoki SIEB. (Moraceae) in low yield. Broussonetines R, S and T were formulated as (2R,3R,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(1R)-1-hydroxy-3-[6-(4-hydroxybutyl)-cyclohexy-2-on-1(6)-enyllpropyl] pyrrolidine (1), (2R,3R,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(1R,10S)-1,10,13-trihydroxytridecyl] pyrrolidine (2), (2R,3R,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(1R,5S)-1,5, 13-trihydroxy-10-oxo-tridecyl] pyrrolidine (3). And broussonetines U and V were proposed to be (2S,3S,4S)-2-hydroxymethyl-3, 4-dihydroxy-5-(9-oxo-13-hydroxytridecyl)-5-pyrroline (4), (2R,3S,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(E)-9-oxo-13-hydroxy-3-tridecenyl] pyrrolidine (5), respectively, by spectroscopic and chemical methods.  相似文献   

8.
Further study on the microbial transformation of curcumol (1) by Cunninghamella blakesleana (AS3.970) led to the isolation of four novel metabolites. Their structures were elucidated as 3beta-hydroxy curcumol (2), 12-hydroxy curcumol (3), 1alpha-hydroxy-10beta,14-epoxy curcumol (4) and (2S,4S,5S,7S)-10-hydroxymethyl-7-isopropyl-2-methoxy-4-methyl-1-oxaspiro[4,6]undec-10-en-8-one (5) on the basis of spectral methods. All of them were characterized as new compounds.  相似文献   

9.
The electronic absorption spectra of 2-aminopyrimidine (compound I), 2-amino-4-methylpyrimidine (compound II), 2-amino-4,6-dimethylpyrimidine (compound III), 2-amino-4,6-dimethoxypyrimidine (compound IV), 4-amino-2,6-dimethylpyrimidine (compound V), and 4,5-diamopyrimidine (compound VI) have been measured in water and in a series of different organic solvents. The solvent effects on the spectra are discussed and the solvent induced spectral shifts are analyzed in terms of different solute–solvent interaction mechanisms, using the multiple linear regression technique.  相似文献   

10.
《Tetrahedron: Asymmetry》1999,10(16):3189-3196
Optically active 3-alkoxy-6-hydroxymethyl-6-methyl-2-cyclohexenone and 6-acetoxymethyl-3-alkoxy-6-methyl-2-cyclohexenone were efficiently obtained by lipase-catalyzed kinetic resolution. (R)-6-Acetoxymethyl-3-(methoxymethoxy)-6-methyl-2-cyclohexenone was converted to the synthetic intermediate of cassiol.  相似文献   

11.
Several disubstituted pyrazolo[3,4-d]pyrimidine, pyrazolo[1,5-a]pyrimidine and thiazolo[4,5-d]pyrimidine ribonucleosides have been prepared as congeners of uridine and cytidine. Glycosylation of the trimethylsilyl (TMS) derivative of pyrazolo[3,4-d]pyrimidine-4,6(1H,5H,7H)-dione ( 4 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose ( 5 ) in the presence of TMS triflate afforded 7-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)pyrazolo-[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 6 ). Debenzoylation of 6 gave the uridine analog 7-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 3 ), identical with 7-ribofuranosyloxoallopurinol reported earlier. Thiation of 6 gave 7 , which on debenzoylation afforded 7-β-D-ribofuranosyl-6-oxopyrazolo[3,4-d]pyrimidine-4(1H,5H)-thione ( 8 ). Ammonolysis of 7 at elevated temperature gave a low yield of the cytidine analog 4-amino-7-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-6(1H)-one ( 11 ). Chlorination of 6 , followed by ammonolysis, furnished an alternate route to 11 . A similar glycosylation of TMS-4 with 2,3,5-tri-O-benzyl-α-D-arabinofuranosyl chloride ( 12 ) gave mainly the N7-glycosylated product 13 , which on debenzylation provided 7-β-D-arabinofuranosylpyrazolo[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 14 ). 4-Amino-7-β-D-arabinofuranosyl-pyrazolo[3,4-d]pyrimidin-6(1H)-one ( 19 ) was prepared from 13 via the C4-pyridinium chloride intermediate 17 . Condensation of the TMS derivatives of 7-hydroxy- ( 20 ) or 7-aminopyrazolo[1,5-a]pyrimidin-5(4H)-one ( 23 ) with 5 in the presence of TMS triflate gave the corresponding blocked nucleosides 21 and 24 , respectively, which on deprotection afforded 7-hydroxy- 22 and 7-amino-4-β-D-ribofuranosylpyrazolo[1,5-a]pyrimidin-5-one ( 25 ), respectively. Similarly, starting either from 2-chloro ( 26 ) or 2-aminothiazolo[4,5-d]pyrimidine-5,7-(4H,6H)-dione ( 29 ), 2-amino-4-β-D-ribofuranosylthiazolo[4,5-d]pyrimidine-5,7(6H)-dione ( 28 ) has been prepared. The structure of 25 was confirmed by single crystal X-ray diffraction studies.  相似文献   

12.
《Tetrahedron: Asymmetry》2001,12(12):1779-1784
Crude Pseudomonas cepacia lipase (Amano PS-30) is a suitable biocatalyst for the kinetic resolution of the 1,2-cis-disubstituted cyclopentanoid building block (3aR*,4R*,6aS*)-(±)-4-hydroxymethyl-3,3a,4,6a-tetrahydrocyclopenta[b]furan-2-one through enantioselective transesterification. Enantiomerically enriched acetic acid (3aS,4S,6aR)-(+)-2-oxo-3,3a,4,6a-tetrahydro-2H-cyclopenta[b]furan-4-yl methyl ester was utilized in a formal synthesis of the iridoids (+)-isoiridomyrmecin and (−)-teucriumlactone.  相似文献   

13.
From the reaction of benzotriazoles with 2,3-dihydro-4H-pyrane and 2-acetoxymethyl-3,4-dihydro-2H-pyrane the corresponding 1-(2-tetrahydropyranyl)benzotriazole and cis-and trans-1-(6-acetoxymethyl-2-tetrahydropyranyl)benzotriazole derivatives were obtained. The structures and conformations of these compounds were confirmed by UV and NMR spectra.  相似文献   

14.
Several 3-alkoxysubstituted pyrazolo[3,4-d]pyrimidine ribonucleosides structurally related to adenosine, inosine and guanosine have been prepared by the direct glycosylation of preformed aglycon precursor containing a 3-alkoxy substituent. Ring closure of 5(3)-amino-3(5)-ethoxypyrazole-4-carboxamide ( 6b ) with either formamide or potassium ethyl xanthate gave 3-ethoxyallopurinol ( 7b ) and 3-ethoxy-6-thioxopyrazolo[3,4-d]-pyrimidin-4(5H,7H)-one ( 10 ), respectively. Methylation of 10 gave the corresponding 6-methylthio derivative 15 . Similar ring annulation of 5(3)-methoxypyrazole-4-carboxamide ( 6a ) with formamide afforded 3-methoxyallopurinol ( 7a ). Treatment of 5(3)-amino-3(5)-methoxypyrazole-4-carbonitrile ( 5a ) with formamidine acetate furnished 4-amino-3-methoxypyrazolo[3,4-d]pyrimidine ( 4 ). High-temperature glycosylation of 7b with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose in the presence of boron trifluoride etherate gave a 2:1 mixture of N-1 and N-2 glycosyl blocked nucleosides 11b and 13b . Deprotection of 11b and 13b with sodium methoxide gave 3-ethoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 12b ) and the corresponding N-2 glycosyl isomer 14b , respectively. Similar glycosylation of either 4 or 7a , and subsequent debenzoylation gave exclusively 4-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine ( 9 ) and 3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4-(5H)-one ( 12a ), respectively. The structural assignment of 12a was made on the basis of single-crystal X-ray analysis. Application of this general glycosylation procedure to 15 gave the corresponding N-1 glycosyl derivative 16 as the sole product, which on debenzoylation afforded 3-ethoxy-6-(methylthio)-1-(3-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 17 ). Oxidation of 16 and subsequent ammonolysis furnished the guanosine analog 6-arnino-3-ethoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]-pyrimidin-4(5H)-one ( 19 ). Similarly, starting from 3-methoxy-4,6-bis(methylthio)pyrazolo[3,4-d]pyrimidine ( 20 ), 6-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one ( 23 ) was prepared.  相似文献   

15.
4-Isopropoxalyl-1,5-diphenyl-2,3-dihydro-2,3-pyrroledione reacts with thiosemicarbazide to form (3aS*)(4R*)(6aR*)-4,6a-dihydroxy-4-isopropoxycarbonyl-1-thiocarbamoyl-3,5-diphenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-d]pyrazol-6-one. The molecular and crystal structure of the latter was studied by single crystal X-ray diffraction.  相似文献   

16.
4-Acetyl-, 4-acetoxymethyl-, and 4-hydroxymethyl-2-carenes were synthesized using novel ionic liquids. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 114–116, March–April, 2007.  相似文献   

17.
Enantiomerically pure (-)-(1R,4R,5R,6S)- and (+)-(1S,4S,5S,6R)-7-(tert-butoxycarbonyl)-5,6-exo-isopropylidenedioxy-7-azabicyclo[2.2.1]hept-2-one ((-)-3 and (+)-3) have been obtained from the Diels-Alder adduct of N-(tert-butoxycarbonyl)pyrrole and 2-bromo-1-(p-toluenesulfonyl)acetylene, including the Alexakis optical resolution of ketone (+/-)-3 via formation of cyclic aminals with (1R,2R)-diphenylethylenediamine. Compounds (-)-3 and (+)-3 were converted into d- and l-2,3-trans-3,4-cis-4,5-trans-N-(tert-butoxycarbonyl)-5-hydroxymethyl-3,4-isopropylidenedioxyprolines (-)-4 and (+)-4, respectively. Applying the Boc and Fmoc strategies of peptide synthesis, these compounds were used to construct two tripeptides containing the d- or l-2,3-trans-3,4-cis-4,5-trans-3,4-dihydroxy-5-hydroxymethylproline.  相似文献   

18.
The Suzuki-coupling reaction of 2-(dihydroxyboryl)-3,4-dimethyl-2-cyclopenten-1-one and 2-(dihydroxyboryl)-3-methyl-2-cyclopenten-1-one with 2-bromoaniline derivatives affords cyclopentenone compounds from which cyclopentadiene compounds, 4,6-R'(2)-2-(2,5-Me2C5H3)C6H2NH2 and 4,6-R'(2)-2-(2,3,5-Me3C5H2)C6H2NH2 are prepared. After sulfonation of the -NH2 group with p-TsCl, metallation is carried out by successive addition of Ti(NMe2)4 and Me2SiCl2 affording o-phenylene-bridged Cp/sulfonamido titanium dichloride complexes, [4,6-R'(2)-2-(2,5-Me2C5H2)C6H2NSO2C6H4CH3)]TiCl2 (R'=H, ; R'=Me, ; R'=F, ) and [4,6-R'(2)-2-(2,3,5-Me3C5H)C6H2NSO2C6H4CH3)]TiCl2 (R'=H, ; R'=Me, ; R'=F, ). The molecular structures of and [2-(2,5-Me2C5H2)C6H4NSO2C6H4CH3)]Ti(NMe2)2 are determined by X-ray crystallography. The Cp(centroid)-Ti-N angle in is smaller (100.90 degrees) than that observed for the CGC (constrained-geometry catalyst), [Me2Si(eta5-Me4Cp)(NtBu)]TiCl2 (107.6 degrees) indicating a more "constrained feature" in than in the CGC. Complex shows the highest activity among the newly prepared complexes in ethylene/1-octene copolymerization but it is slightly inferior to the CGC in terms of activity, comonomer-incorporation ability, and molecular weight of the obtained polymers.  相似文献   

19.
Cyclocondensation of 5-methylpyrazol-3-amine with methyl cinnamate and arylmethylidenemalonic acids in DMF and methanol leads to the formation of 7-aryl-2-methyl-6,7-dihydropyrazolo[1,5-a]-pyrimidin-5(4H)-ones. Arylmethylidenemalonic acids react with the title amine at a ratio of 1:2 in nitrobenzene to give 4-aryl-3,5-dimethyl-1,7-dihydrodipyrazolo[3,4-b:4′,3′-e]pyridines. Heterocyclizations of 5-methylpyrazol-3-amine with 5-arylmethylidene-2,2-dimethyl-1,3-dioxane-4,6-diones or their precursors, para-substituted benzaldehydes and 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum’s acid) in all solvents (methanol, DMF, and nitrobenzene) give the corresponding 4-aryl-3-methyl-2,4,5,7-tetrahydropyrazolo[3,4-b]pyridin-6-ones. The structure of 3-methyl-4-(4-nitrophenyl)-2,4,5,7-tetrahydropyrazolo[3,4-b]pyridin-6-one was proved by X-ray analysis.  相似文献   

20.
Metabolism of gentiopicroside (gentiopicrin) by human intestinal bacteria   总被引:2,自引:0,他引:2  
As a part of our studies on the metabolism of crude drug components by intestinal bacteria, gentiopicroside (a secoiridoid glucoside isolated from Gentiana lutea), was anaerobically incubated with various defined strains of human intestinal bacteria. Many species had ability to transform it to a series of metabolites. Among them, Veillonella parvula ss parvula produced five metabolites, which were identified as erythrocentaurin, gentiopicral, 5-hydroxymethylisochroman-1-one,5-hydroxymethylisochromen-1- one and trans-5,6-dihydro-5-hydroxymethyl-6-methyl-1H,3H-pyrano[3,4-c]pyra n-1-one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号