首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
制备了一系列基于氢化SEBS的嵌段离聚物(BCI),研究了具有不同金属对应离子的BCI分别和含聚乙烯吡啶基的无规共聚物MVP和SVP的共混物的溶液粘度和本体的热行为.结果表明,MVP和SVP可与BCI的PS离子化嵌段形成络合物,导致Tg增加且远高于FOX方程预示值,同时比浓粘度远高于加合性预示值.在所研究的金属离子中,Ni和Cu显示最佳的络合能力.  相似文献   

2.
离聚体溶液粘度方程   总被引:1,自引:0,他引:1  
离聚体(ionomer)是指合少量离子基团(低于15%mo)的聚合物.在低极性溶剂中,离子基团发生聚集,因而离聚体溶液的粘性行为明显不同于普通高分子溶液.很多实验表明[1],用于描述普通高分子溶液粘性行为的哈金斯公式并不适用于描述离聚体溶液的粘性行为.因此,到目前为止,对离聚体溶液的离子聚集行为及粘性行为的考察或者是定性的,或者是通过图表曲线直接描述的.本文提出适用于高聚体溶液的半经验关系式,并用实验数据验证,以求更深入和更系统地研究离聚体溶液的粘性行为.1实验部分采用两种分子量的丁基胶(牌号286,加拿大产品…  相似文献   

3.
Poly[N,N′-(sulfo-phenylene)phthalamid]es and poly[N,N′-(sulfo-p-phenylene)pyromellitimide] were prepared in water-soluble form and were found to have unique solution properties, similar in some respects to xanthan. The polymer most investigated, poly[N,N′-(sulfo-p-phenylene)terephthalamide] (PPT-S), is produced as the dimethylacetamide (DMAC) salt by the solution polymerization of 2,5-diaminobenzenesulfonic acid with terephthaloyl chloride in DMAC containing LiCl. The isolated polymer requires heating in water to dissolve; the resulting cooled solutions are viscous or gels at concentrations as low as 0.4%. They are highly birefringent, exhibit circular dichroism properties, and are viscosity-sensitive to salt. Solutions of this polymer mixed with those of guar or hydroxyethyl cellulose give significantly enhanced viscosity. The polymer is relatively low molecular weight, ca. 5000 estimated from viscosity data. Some meta and para isomeric analogs of PPT-S were prepared; these polymers have similar properties except they are more soluble in water, and higher concentrations are required to obtain significant viscosity. Poly[N,N′-(sulfo-p-phenylene) pyromellitimide] (PIM-S) was prepared similarly from 2,5-diaminobenzenesulfonic acid and pyromellitic dianhydride. Its aqueous solution properties are similar to those of PPT-S. It appears that these relatively low-molecular-weight rigid-chain polymers associate in water to form a network that results in viscous solutions at low concentrations.  相似文献   

4.
This work presents experimental results on simple shear and porous media flow of aqueous solutions of two hydroxyethyl celluloses (HEC) and two hydrophobically modified hydroxyethyl celluloses (HMHEC) with different molecular weights. Mixtures of these polymers with a cationic surfactant, cetyltrimethylammonium p-toluenesulfonate (CTAT) were also studied. Emphasis was given to the range of surfactant concentrations in which wormlike micelles are formed. The presence of hydrophobic groups, the effect of the molecular weight of the polymers, the surfactant and polymer concentrations, and the effect of the flow field type (simple shear versus porous media flow) were the most important variables studied. The results show that the shear viscosity of HEC/CTAT solutions is higher than the viscosities of surfactant and polymer solutions at the same concentrations, but surface tension measurements indicate that no complex formation occurs between CTAT and HEC. On the other hand, a complex driven by hydrophobic interactions was detected by surface tension measurements between CTAT and HMHEC. In this case, the viscosity of the mixture increases significantly more (up to four orders of magnitude at high CTAT concentrations) in comparison with HEC/CTAT aqueous solutions. Increments in the molecular weight of the polymers increase the interaction with CTAT and the shear viscosity of the solution, but make phase separation more feasible. In porous media flow, the polymer/CTAT mixtures exhibited higher apparent viscosities than in simple shear flows. This result suggests that the extensional component of the flow field in porous media flows leads to a stronger interaction between the polymer and the wormlike micelles, probably as a consequence of change of conformation and growth of the micelles.  相似文献   

5.
Interpolymer complexation of poly(acrylic acid) with poly(acrylamide) and hydrolysed poly(acrylamide) was studied by fluorescence spectroscopy and viscometry in dilute aqueous solutions. Changes in chain conformation and flexibility due to the interpolymer association are reflected in the intramolecular excimer fluorescence of pyrene groups covalently attached to the polymer chain. Both poly(acrylamide) and hydrolysed poly(acrylamide) form stable complexes with poly(acrylic acid) at low pH. The molecular weight of poly(acrylic acid) and solution properties such as pH and ionic strength were found to influence the stability and the structure of the complexes. In addition, the polymer solutions mixing time showed an effect on the mean stoichiometry of the complex. The intrinsic viscosity of the solutions of mixed polymers at low pH suggested a compact polymer structure for the complex.  相似文献   

6.
Associating polymers are hydrophilic long-chain molecules containing a small amount of hydrophobic groups. The aqueous solutions show viscoelastic responses above some critical concentrations because a three-dimensional structure is formed by association of hydrophobic groups. When the associating polymers are added to silica suspensions at low concentrations, the flocculation is induced by bridging mechanisms, and the flow of suspensions become shear-thinning. For suspensions prepared with polymer solutions in which the associating network is developed, the viscosity decreases, shows a minimum, and then increases with increasing particle concentration. The viscosity decrease may arise from the breakdown of associating network due to adsorption of polymer chains onto the silica surfaces. As the particle concentration is increased, the polymer concentration in solution is decreased, and finally, all polymer chains are adsorbed on the surfaces. Beyond this point, the partial coverage of particle surfaces takes place and strong interactions are generated between particles by polymer bridging. Since the stable suspensions are converted to highly flocculated systems, the viscosity is increased and the flow becomes shear-thinning. The concentration effect of silica particles on the viscosity behavior of suspensions can be explained by a combination of viscosity decrease in solution due to polymer adsorption and viscosity increase due to flocculation.  相似文献   

7.
Physical properties of poly(amic acid) (PAA) casting solutions in N-methyl-2-pyrrolidone (NMP) containing lithium chloride (LiCl) were characterized by viscometry and dynamic light scattering (DLS) and were related to the morphological properties of asymmetric membranes prepared from these solutions. At a fixed polymer concentration, the increase in viscosity of the PAA solutions with increasing LiCl content is mainly determined by the viscosity of the salt–solvent medium, implying that the LiCl–NMP interactions are stronger than those between LiCl and PAA. Because of the strong salt–solvent interactions, complexes between LiCl and NMP are formed. The complexes reduce the solvent power of NMP for PAA inducing polymer aggregation (clustering) and/or transient cross-links in the solutions. Dynamic light scattering results for salt-containing solutions at low PAA concentrations support the existence of these aggregations. Solutions without salt showed a single relaxation, but solutions with LiCl exhibit multiple relaxation modes; two diffusional modes of cooperative and aggregates, and one angle independent transient network mode. The polymer aggregates and transient cross-links form a gel-like structure in the casting solution film and hinder macrovoid formation during phase inversion, resulting in asymmetric membranes with a primarily sponge-like structure.  相似文献   

8.
Aqueous solutions of a charged hydrophobically modified hydroxyethylcellulose (HM-HEC(−)) exhibit high viscosities even at low polymer concentrations (0.2 wt%), which is an interesting feature in connection with enhanced oil recovery. This polymer was synthesized for this work. Effects of temperature and addition of sodium dodecyl sulfate (SDS) or hydroxypropyl-β-cyclodextrin (HP-β-CD) on the viscosity properties of a semidilute solution of HM-HEC(−) are examined. The results for the HM-HEC(−)/SDS system disclose strong interactions between HM-HEC(−) and SDS at low level of SDS addition, and this leads to a significant viscosification of the polymer-surfactant mixture. At higher surfactant concentrations the association complexes are disrupted. A strong temperature effect of the viscosity is observed at moderate levels of SDS addition, with lower values of the viscosity at elevated temperatures because of enhanced polymer chain mobility that breaks up the associations. Addition of HP-β-CD monomers to the HM-HEC(−) solution generates decoupling of associations via inclusion complex formation with the polymer hydrophobic tails and the viscosity decreases. By using temperature and addition of these co-solutes, it is demonstrated that the viscosity of the polymer solution can be tuned over a large range of viscosity values.  相似文献   

9.
The viscosity behavior of polyelectrolyte solutions induced by borate or phenylboronate complexation with poly(glyceryl methacrylate) (PGM) has been investigated. In dilute solutions borate ions can form monodiol (1/1) complexes and didiol (2/1) intramolecular complexes. Both types of complex are anionic. Thus, the polymer is characterized by the existence of charged sites on the chain and loops formed by intramolecular complexation. On the contrary, phenylboronate can only give monodiol 1/1 complexes. In the presence of passive salt, the charges are screened. By addition of borate ion to a PGM solution, a decrease of the initial polymer viscosity due to loop formation is first observed, then the anionic charges fixed on the chain by complex formation induce an expansion of the polyelectrolyte and the viscosity of the solution increases. The situation is different for the PGM-phenyl boronate system, where no intramolecular crosslink is present. In this case the viscosity of the solution increases with phenyl boronate concentration. But for a fixed complexing ion concentration it will tend to that of the neutral polymer when NaCl is added. ©1995 John Wiley & Sons, Inc.  相似文献   

10.
The concepts developed for flexible-chain linear high-molecular-weight polymers of narrow molecular weight distribution, according to which transition from the fluid to the highelastic state at increased shear rates is accompanied by loss of fluidity, have been extended to concentrated solutions of these polymers. The change of principal viscoelastic characteristics, in a concentration range which can be associated with the effect of formation of an entanglement network in polymer solution, is considered. On the basis of the parameters characterizing the viscous properties of dilute polymer solutions (the intrinsic viscosity and the Martin constant), a generalized representation of the dependence of the initial viscosity of polybutadiene solutions on concentration over the entire range up to bulk polymer has been derived.  相似文献   

11.
Two new water soluble dendronized polymers (PLn) from acrylate Behera amine monomer of different molecular weights were successfully synthesized. The polymers were characterized by FTIR, NMR, GPC and DLS. Both GPC and DLS results indicated that these PLn have a remarkable tendency to form aggregates in solution that lead to apparent molecular weights that are much higher than their theoretical values, as well as large diameters in solution. However, the addition of any PLn to water did not cause any increase in viscosity up to concentrations of 1000 ppm. The possible interactions of PLn with the cationic surfactant CTAT were explored by solution rheometry. A synergistic viscosity enhancement was found by adding small amounts of dendronized PLn polymers to a CTAT solution composed of entangled worm-like micelles. The highest association tendency with CTAT was found for PL1 at the maximum polymer concentration before phase separation (i.e., 100 ppm). The solution viscosity at low-shear rates could be increased by an order of magnitude upon addition of 100 ppm of PL1 to a 20mM CTAT solution. For this mixture, the fluid obtained was highly structured and exhibited only shear thinning behavior from the smallest shear rates employed. These PL1/CTAT mixtures exhibited an improved elastic character (as determined by dynamic rheometry) that translated in a much longer value of the cross-over relaxation time and a pronounced thixotropic behavior which are indicative of a strong intermolecular interaction. In the case of the polymer with a higher theoretical molecular weight, PL2, its association with CTAT leads to an extraordinary doubling of solution viscosity with just 0.25 ppm polymer addition to a 20mM CTAT solution. However, such synergistic viscosity enhancement saturated at rather low concentrations (25 ppm) indicating an apparent lower solubility as compared to PL1, a fact that may be related to its higher molecular weight.  相似文献   

12.
An ideal solute for density gradient ultracentrifugation of polymers in aqueous solution should be inert and readily soluble in water to form an extended range of solution densities of low viscosity. High molecular weight is an added attraction because osmotic effects are minimized. Highly branched spherical synthetic polysaccharides fulfill these requirements. High degree of branching is a consequence of the condensation of polyfunctional monomers. Density and relative viscosity of solutions of polyglucose, sucrose, and of a natural sucrose polymer, Ficoll, are compared. The behavior of various polyelectrolytes was studied in low viscosity polyglucose density gradients in equilibrium buoyant density measurement in the ultra-centrifuge. Macromolecules or macromolecular complexes attain low apparent equilibrium buoyant density, probably because of an excluded volume effect of the solute. This allows sedimentation to isopycnic position of complex biopolymers in inert polyglucose solutions, which otherwise can be attempted only in concentrated solutions of heavy salts (such as CsCI or Cs2SO4). Such salts, however, may salt out, or through osmotic effects degrade or alter the properties of certain biologic macromolecular complexes.  相似文献   

13.
In aqueous solutions, beta-cyclodextrin (CD) and cyclodextrin-containing polymers (PolCD) associate with azobenzene-modified polyacrylate (AMP). Inclusion complexes in solution of CD (or PolCD) and AMP, and the viscosity of these mixtures, have been studied as a function of the composition of AMP and concentrations of samples. AMPs are random copolymers containing a low fraction of a light-responsive hydrophobic moieties (<10 mol % of 6-[4-alkylamido]phenylazobenzene acrylamide), and a charged hydrophilic unit, sodium acrylate. PolCDs are beta-cyclodextrin randomly conjugated with epichlorohydrin and fractionated to yield copolymers of average number of CD per chain equal to 50. In dilute solutions, the composition of complexes has been investigated by capillary electrophoresis and UV-vis spectrometry. Association between PolCD and AMP appears more complex than the conventional Benesi-Hildebrand scheme. We identified a tight (quantitative) binding regime followed by a gradual increase of the density of AMP-bound PolCD upon increasing the concentration of PolCD. At higher concentrations, the formation of large clusters has been characterized by the increase of viscosity by several decades. Light-triggered trans-conformation of the azobenzene moieties of AMPs leads to a marked photoswitch of viscosity. Reversible viscosity swings by up to 6-fold were achieved by alternative exposure to UV and visible lights. In contrast, the composition of PolCD/AMP complexes in dilute regime does not respond to light, though subtle modifications of the structures of complexes are reflected by variation of electrophoretic mobilities and UV spectra. The properties of interpolymer clusters and photoviscosity are accordingly the result of modification of the dynamics of association. In practice, the low concentration of photochrome makes it possible to obtain rapid responses in samples having a thickness of the order of cm. The data reported provide guidelines for the formulations of CD/polymer systems, specifically, viscosity enhancers, which should show promising developments in pharmaceuticals or cosmetics.  相似文献   

14.
The intermacromolecular complexation of polymers with chemically complementary structures in aqueous media is a new approach to modifying polymer solutions, especially to enhance solution viscosity. In this study, complexed solutions formed through the hydrogen‐bonding complexation of several nonionic water‐soluble polymer pairs—poly(acrylic acid) (PAA) with polyacrylamide (PAM), PAM with poly(ethylene oxide) (PEO), PAA with poly(vinyl alcohol) (PVA), and PEO with PVA—were prepared, and the viscosity enhancement of the complexed solutions were studied with vision spectrophotometry and viscometry. The effects of the polymer concentration, polymer molecular weight, and pH value of the polymer solution on the intermacromolecular interactions were investigated through a comparison of the viscosity enhancement factor R of different complexed solutions. The results show that the viscosity of the PAA/PAM complexed solution is much higher than that of its constituents, whereas that of the PAM/PEO and the PAA/PVA complexed solutions are between the viscosities of their constituents but are higher than the theory values calculated from the blending rule of two polymer solutions. These results indicate that in the complexed solutions there exist interactions between the macromolecules with chemically complementary structures, although the interactions are quite different for the different complexed systems. It is the interactions that lead to an association of the polymers and, hence, an obvious enhancement in the solution viscosity and the resistance of the polymer solutions to shearing. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1069–1077, 2000  相似文献   

15.
Novel cationic hydroxyethyl cellulose (HEC) polymers with different molecular weights (1.1 x 10(5) to 1.7 x 10(6) g/mol) and ethylene oxide (EO) side chain lengths (1.5-2.9 EO units) were mixed with sodium dodecyl sulfate (SDS) in aqueous solutions. The phase diagrams of cationic HEC-SDS complexes were determined in the dilute polymer concentration regime (< 0.5 wt %) with gradual addition of SDS molecules. The viscosity and structures of the complexes during the phase evolution were studied using rheometry and dynamic light scattering. The gradual addition of SDS first induced interchain associations with the bound SDS aggregates serving as cross-linkers to form an open network structure, producing a very broad size distribution and high viscosities of the complex solutions, and then condensed the network and induced a structure reorganization, resulting in globular aggregates with narrow size distributions. The growth of these globular aggregates in size eventually led to macroscopic sedimentation near charge neutralization. Further addition of SDS randomly broke the sedimentary aggregates into small particles and SDS micelles with low solution viscosities. The effects of molecular weight and EO side chain length of polymers on the phase boundary, viscosity, and structure of cationic HEC-SDS complexes were discussed.  相似文献   

16.
Two series of novel inorganic-organic composite polymers have been prepared through physical blending of magnesium chloride and magnesium hydroxide respectively with polyacrylamide aqueous solution. The physicochemical properties of the magnesium salt-polyacrylamide composite polymers were tuned by varying the ratio between the magnesium salt (e.g., magnesium chloride and magnesium hydroxide) and polyacrylamide. Characterizations of magnesium salt-polyacrylamide composite polymers were carried out via FTIR and TEM. Parameters such as solution conductivity and viscosity were also taken into account to characterize the physicochemical properties of the composite polymer aqueous solutions. Magnesium chloride-polyacrylamide (MCPAM) composite polymer aqueous solutions have a higher conductivity compared to magnesium hydroxide-polyacrylamide (MHPAM) composite polymer aqueous solutions. The viscosities of the MHPAM composite polymer aqueous solutions were found higher than MCPAM composite polymer aqueous solutions. The rheological properties of the composite polymer aqueous solutions were investigated using steady-state flow and oscillatory frequency sweep within the linear viscoelastic region. Shear-thinning effect was observed for both composite polymer systems when the shear rate increases. In oscillatory frequency sweep tests, both composite polymer systems show that the viscoelastic behaviors depend strongly on the magnesium salt concentrations. Viscous behavior was found to be dominant for both composite polymer systems.  相似文献   

17.
The rheological behavior of a mixture of two liquid-crystal polymers, hydroxypropyl cellulose and ethyl cellulose, in acetone solution is studied. The total polymer concentration in the solvent is held constant (40%) as the ratio of the two polymers is varied. The mixtures are anisotropic, isotropic, or biphasic (isotropic/anisotropic), depending on the concentration. Curves of viscosity vs shear rate for all the mixtures studied show three regions of viscosity, as described by Onogi and Asada for liquid-crystal polymers. The viscosity as a function of the weight ratio of the two polymers at constant shear rate exhibits deviations from additivity of viscosities of the two components at all concentrations. In mixtures of two polymers in the melt, deviations are also observed; the negative ones are attributed to phase separation and the positive ones to homogenous mixing (comparison with the phase diagram). All the mixtures studied (anisotropic, isotropic, or biphasic), show ranges of shear rates where the first normal-stress difference is negative, as is generally observed for anisotropic liquid-crystal polymers. It is concluded that the isotropic solutions become anisotropic under shear, as they are not far from the critical concentration. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Buchholz BA  Shi W  Barron AE 《Electrophoresis》2002,23(10):1398-1409
We review the variety of thermo-responsive and shear-responsive polymer solutions with "switchable" viscosities that have been proposed for application as DNA sequencing matrices for capillary and microfluidic chip electrophoresis. Generally, highly entangled polymer solutions of high-molar mass polymers are necessary for the attainment of long DNA sequencing read lengths (> 500 bases) with short analysis times (< 3 h). However, these entangled polymer matrices create practical difficulties for microchannel electrophoresis with their extremely high viscosities, necessitating high-pressure loading into capillaries or chips. Shear-responsive (shear-thinning) polymer matrices exhibit a rapid drop in viscosity as the applied shear force is increased, but still require a high initial pressure to initiate flow of the solution into a microchannel. Polymer matrices designed to have thermo-responsive properties display either a lowered (thermo-thinning) or raised (thermo-thickening) viscosity as the temperature of the solution is elevated. These properties are generally designed into the polymers by the incorporation of moderately hydrophobic groups in some part of the polymer structure, which either phase-separate or hydrophobically aggregate at higher temperatures. In their low-viscosity states, these matrices that allow rapid loading of capillary or chip microchannels under low applied pressure. The primary goal of work in this area is to design polymer matrices that exhibit this responsive behavior and hence easy microchannel loading, without a reduction in DNA separation performance compared to conventional matrices. While good progress has been made, thermo-responsive matrices have yet to offer sequencing performance as good as nonthermo-responsive networks. The challenge remains to accomplish this goal through the innovative design of novel polymer structures.  相似文献   

19.
Two fractions of ethyl(hydroxy)ethyl cellulose, EHEC, and their interactions with sodium dodecyl sulphate, SDS, have been investigated. The effect of salt on these interactions was explored. The more hydrophobic fraction exhibits a cloud point (CP) of 30°C, and the more hydrophilic fraction has a CP around 65°C. The properties of the systems were studied by means of hydrodynamic (viscosity), equilibrium dialysis and cloud point measurements. Dye solubilization was used to obtain indications of cluster formation on the polymer backbone. The equilibrium dialysis shows a steep binding beginning at a critical surfactant concentration indicating a cooperative effect in the EHEC/SDS/water system. It is found that when the degree of binding is moderate and only 10–20% of the value at saturation, the specific viscosity effects occur and solutions containing high polymer concentrations pass a marked maximum in viscosity. It is shown that the maximum in viscosity and the collcoil interaction, expressed as Huggins constant,k H, appear a composition with the same fractional amount of SDS adsorbed to both EHEC fractions. It was found that the onset of redistribution and increase in viscosity were shifted to higher SDS concentrations, although still below the normal CMC, for the EHEC fraction with a high CP. When small amounts of salt are present in the EHEC/SDS/water solutions, the CP curves develop a pronounced minimum at low SDS concentrations. The redistribution of SDS to the polymers starts immediately in the presence of salt, but the viscosity of the solutions is affected only in a very narrow composition interval.  相似文献   

20.
This article shows the extent to which the entanglement of threadlike molecules can influence many of the properties of deformable polymers and of solutions of macromolecular substances. Thus, the molecular concept of entanglement leads to quantitative predictions of the dependence of the entanglement number on the nature of the polymer, its concentration, and extension. Experimental values of the relaxation modulus confirm these predictions for melts and solutions. The influence of entanglemnt on relaxation and flow processes leads to very simple relationships for the magnitudes of the structural viscosity and the shear stress at which the structural viscosity starts to become measurable. Osmotic pressures, light scattering intensities, and diffusion coefficients of concentrated solutions can be derived quantitatively from the conformational constraints due to entanglement. Entanglement is effective above a concentration at which the three-dimensional coils fill the solution volume, and probably also at lower concentrations. At very high concentrations entangled structures may be formed which drastically reduce the number of possible conformations. The swelling and extension behavior of cross-linked deformable polymers can be understood only if entanglement is taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号