首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
We propose a zeroth-order Hamiltonian for many-body perturbation theory based on the unitary decomposition of the two-particle reduced Hamiltonian. For the zeroth-order Hamiltonian constrained to be diagonal in the Hartree-Fock basis set, the two-particle reduced perturbation matrix is chosen to have a minimal Frobenius norm. When compared with the M?ller-Plesset partitioning, the method yields more accurate second-order energies.  相似文献   

3.
A many-body diagrammatic perturbation theory of rotation–vibration spectra is elaborated. The present approach is based on two many-body techniques, namely on the second quantization formalism (a rotating–vibrating molecule is formally treated here as a system of interacting vibrons, obeying the Bose–Einstein statistics) and the many-body diagrammatic theory of a model Hamiltonian, initially suggested in the microscopic theory of nuclei and in the last decade very frequently exploited in the accounting for the correlation effects in many electron systems. In the framework of this theory, the rotation–vibration energies are determined as the eigenvalues of a finite-dimensional model eigenproblem.  相似文献   

4.
The UHF Hamiltonian and simple Löwdin-like annihilators are formulated in the second quantization formalism. The so formulated Hamiltonian was employed in many-body Rayleigh-Schrödinger perturbation theory to evaluate the corrections to the UHF orbital energies.  相似文献   

5.
Contact transformation is an operator transformation method in time-independent perturbation theory which is used successfully in molecular spectroscopy to obtain an effective Hamiltonian. Floquet theory is used to transform the periodic time-dependent Hamiltonian, to a time-independent Floquet Hamiltonian. In this article contact transformation method has been used to get the analytical representation of Floquet Hamiltonian for quadrupolar nuclei with spin I = 1 in the presence of an RF field and first order quadrupolar interaction in magic angle spinning NMR experiments. The eigenvalues of contact transformed Hamiltonian as well as Floquet Hamiltonian have been calculated and a comparison is made between the eigenvalues obtained using the two Hamiltonians.  相似文献   

6.
In connection with spin adaptation in many-body perturbation theory, this paper reexamines the use of spin graphs in view of a Hugenholtz-like representation where both the orbital and the spin parts coexist. Together with the idea of essentially distinct diagrams, this representation leads to an economic handling of spin adaptation. As a side issue, the appropriate generalization of the Epstein–Nesbet partitioning for spin-adapted perturbation theory is obtained. Compact formulas up to fourth order of the ground-state energy, and up to third order for excitation energies and ionization potentials are given.  相似文献   

7.
A second-quantization representation of the Epstein-Nesbet partitioning of the total electronic hamiltonian is suggested. In this approach, the unperturbed hamiltonian contains not only the one-particle orbital energies but also the Coulomb and corresponding exchange two-particle terms. Such a hamiltonian can advantageously be used in all branches of the many-body diagrammatic perturbation theory for simple and correct inclusion of the diagonal ladder and ring diagrams in all orders of perturbation theory.  相似文献   

8.
9.
The superdirect configuration interaction (Sup-CI ) method has the usual versatility and stability of the CI methods with computational efficiency typical to that of the many-body methods, such as the many-body perturbation theory (MBPT ). The Hamilton operator is projected into a space of a few trial vectors, such as Krylov, Nesbet, or Møller–Plesset correction vectors. In this space, Hamiltonian matrix elements may be directly computed in the many-body fashion, as weighted sums of integral products over orbital indices. The variation-perturbation method based on the first-order wave function is equivalent to the Sup-CI method with a single correction vector of the Møller–Plesset type. Different points of view on the superdirect CI method are discussed and a version in which third-order contributions are computed for a relatively small (10–100) space of reference and correction vectors is tested. Selection of the best “effective first-order spaces” and size-extensivity corrections in Sup-CI are briefly discussed. Møoller–Plesset, Epstein–Nesbet, and other correction vectors are included in the model calculations on the symmetric stretch of bonds in water, acetylene, and the NH2 molecule. Errors are almost independent of molecular geometry and the method appears to be superior than the multireference second-order perturbation methods. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
A partitioning of the molecular Hamiltonian into the occupied and virtual orbital spaces and their orthogonal complement is introduced and used to develop a perturbation expansion of the exact ground-state energy relative to the Hartree–Fock energy computed using an incomplete basis set. The leading perturbation corrections to pair energies due to using the incomplete basis set are considered in detail. Summations of certain classes of pair contributions are discussed and a resummed correction is obtained.  相似文献   

11.
Ab initio density functional theory (DFT), previously applied primarily at the second-order many-body perturbation theory (MBPT) level, is generalized to selected infinite-order effects by using a new coupled-cluster perturbation theory (CCPT). This is accomplished by redefining the unperturbed Hamiltonian in ab initio DFT to correspond to the CCPT2 orbital dependent functional. These methods are applied to the Be-isoelectronic systems as an example of a quasidegenerate system. The CCPT2 variant shows better convergence to the exact quantum Monte Carlo correlation potential for Be than any prior attempt. When using MBPT2, the semicanonical choice of unperturbed Hamiltonian, plays a critical role in determining the quality of the obtained correlation potentials and obtaining convergence, while the usual Kohn-Sham choice invariably diverges. However, without the additional infinite-order effects, introduced by CCPT2, the final potentials and energies are not sufficiently accurate. The issue of the effects of the single excitations on the divergence in ordinary OEP2 is addressed, and it is shown that, whereas their individual values are small, their infinite-order summation is essential to the good convergence of ab initio DFT.  相似文献   

12.
The finite-order many-body perturbation theory using the localized Wannier orbital basis is applied to the problem of bond length alternation in the Pariser–Parr–Pople model of cyclic polyenes CN HN, N = 4v + 2, which may be regarded as a simplified model of polyacetylene. Both the Møller–Plesset and the Epstein–Nesbet-type partitionings of the model Hamiltonian are employed. The localized orbital basis enables an efficient truncation of the perturbation theory summations over the intermediate states as well as an elimination of energetically unimportant diagrams, thus enabling one to obtain the fourth-order Møller–Plesset-perturbation energies with a relatively small computational effort even for large polyenes. The results obtained with the second-, third-, and fourth-order Møller–Plesset and with the third-order Epstein–Nesbet perturbation theories yield very similar bond length distortions (about 0.05 Å) and stabilization energies per site (about 0.04 eV) as obtained earlier with the RHF , one-parameter AMO , and delocalized orbital perturbation theories. The effects of truncation and diagram elimination in the fourth-order Møller–Plesset perturbation theory and the abnormal behavior of the second-order Epstein–Nesbet perturbation theory results in the localized Wannier basis near the instability threshold of the RHF solutions are discussed.  相似文献   

13.
Many-body perturbation calculations have been performed for the ground state of the carbon monoxide molecule at its equilibrium internuclear separation. The calculations are complete through third order within the algebraic approximation; i.e., the state functions are parameterized by expansion in a finite basis set. All two-, three-, and four-body terms are rigorously determined, and many-body effects are found to be very important. A detailed comparison is made with a previously reported configuration interaction study. Padé approximants to the energy expansion are constructed. The many-body perturbative wave function is used in the Rayleigh quotient to produce upper bounds to the electronic energy.  相似文献   

14.
For Ar2–29 and Ar 2–29 + clusters at 20 K in the polarization model presented here the electrodynamical dipole-dipole many-body problem is solved selfconsistently with the Monte-Carlo method (MC) at 20 K, i.e. the instantaneous dipole-dipole interaction is solved to infinite perturbation order and in cluster expansion to the order of the cluster size. The long range many-body dipole-dipole interaction is coupled to exchange interaction by a modified effective dipole polarizability. This model will be compared to the dimer model and classical MC simulation of Ar n . The resulting different magic numbers in the binding energies are discussed in this connection with different experimental techniques of cluster ionization. By the mean square cluster diameter a shape parameter is introduced and it is found that with this parameter structural form transition in cluster growth can be resolved, and surprisingly do not correlate with the magic numbers.  相似文献   

15.
Perturbative contributions to single-beam two-photon transition rates may be divided into two types. The first, involving low-energy intermediate states, require a high-order perturbation treatment, or an exact diagonalization. The other, involving high-energy intermediate states, only require a low-order perturbation treatment. We show how to partition the effective transition operator into two terms, corresponding to these two types, in such a way that a many-body perturbation expansion may be generated that obeys the linked cluster theorem and has a simple diagrammatic representation.  相似文献   

16.
In a previous paper a correlated one-particle method was formulated, where the effective Hamiltonian was composed of the Fock operator and a correlation potential. The objective was to define a correlated one-particle theory that would give all properties that can be obtained from a one-particle theory. The Fock-space coupled-cluster method was used to construct the infinite-order correlation potential, which yields correct ionization potentials (IP's) and electron affinities (EA's) as the negative of the eigenvalues. The model, however, was largely independent of orbital choice. To exploit the degree of freedom of improving the orbitals, the Brillouin-Brueckner condition is imposed, which leads to an effective Brueckner Hamiltonian. To assess its numerical properties, the effective Brueckner Hamiltonian is approximated through second order in perturbation. Its eigenvalues are the negative of IP's and EA's correct through second order, and its eigenfunctions are second-order Brueckner orbitals. We also give expressions for its energy and density matrix. Different partitioning schemes of the Hamiltonian are used and the intruder state problem is discussed. The results for ionization potentials, electron affinities, dipole moments, energies, and potential curves are given for some sample molecules.  相似文献   

17.
A size-consistent ab initio formalism to calculate correlation corrections to ionization potentials as well as electron affinities of periodic systems is presented. Our approach is based on a Hartree-Fock scheme which directly yields local orbitals without any a posteriori localization step. The use of local orbitals implies non-zero off-diagonal matrix elements of the Fock operator, which are treated as an additional perturbation and give rise to localization diagrams. Based on the obtained local orbitals, an effective Bloch Hamiltonian is constructed to second order of perturbation theory with all third-order localization diagrams included. In addition, the summation of certain classes of diagrams up to infinite order in the off-diagonal Fock elements as well as the Epstein-Nesbet partitioning of the full Hamiltonian are discussed. The problem of intruder states, frequently encountered in many-body perturbation theory, is dealt with by employing the theory of intermediate Hamiltonians. As model systems we have chosen cyclic periodic structures up to an oligoethylene ring in double-zeta basis; however, the theory presented here straightforwardly carries over to infinite periodic systems. Received: 30 April 1998 / Accepted: 27 July 1998 /  Published online: 7 October 1998  相似文献   

18.
An ab initio-based global double many-body expansion potential energy surface is reported for the first electronic state of the NO(2)((2)A") manifold. Up to 1700 ab initio energies have been employed to map the full configuration space of the title molecule, including stationary points and asymptotic channels. The calculated grid energies have been scaled to account for the incompleteness of the basis set and truncation of the MRCI expansion and fitted analytically with a total root-mean-squared-deviation smaller than 1.0 kcal mol(-1). The lowest point of the potential energy surface corresponds to the (2)B(1) linear minimum, which is separated from the C(s) distorted minimum by a C(2v) barrier of ≈9.7 kcal mol(-1). As usual, the proposed form includes a realistic representation of long-range interactions. Preliminary work indicates its reliability for reaction dynamics.  相似文献   

19.
The size consistency of the second and third order energies of the multireference perturbation theory(Chen F, Davidson E, Iwata S. Int J Quant Chem, 2002, 86: 256) is investigated theoretically with a su-per-molecular model composed of N-hydrogen molecules separated by a large distance. It is found that the two perturbation series corresponding to two Hamiltonian partitions are not size consistent at the second and third order. However, two size consistent forms are suggested for two Hamiltonian parti-tions at the second order, if some approximations to the denominators of the original second order energies are assumed.  相似文献   

20.
Two versions of a many-body perturbation theory for the computation of molecular interaction energies are investigated. The methods are based on the partitioning of the second-quantized form of the dimer Hamiltonian written either in the orthogonalized basis of the monomer MOs, or, alternatively, in the original non-orthogonal dimer basis set handling the overlap by the biorthogonal formalism. The zeroth-order Hamiltonian H 0 is the sum of effective monomer Fockians and the zeroth-order wave functions are exact eigenfunctions of H 0. Full antisymmetry is ensured by the second-quantized formalism. Basis set superposition error is accounted for by the counterpoise correction recipe. Results for He2, (H2)2 and (H2O)2 indicate the reliability of the biorthogonal technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号