首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cationic polymerization of 2-vinyloxyethyl phthalimide ( 1 ) in CH2Cl2 at ?15°C with hydrogen iodide/iodine (HI/I2) as initiator led to living polymers of a narrow molecular weight distribution (M?w/M?n = 1.1–1.25). The number-average molecular weight of the polymers was in direct proportion to monomer conversion and could be controlled in the range of 1000–6000 by regulating the 1 /HI feed ratio. However, when a fresh monomer was supplied to the completely polymerized reaction mixture, the molecular weight of the polymers was not directly proportional to monomer conversion. The polymerization of 1 by boron trifluoride etherate (BF3OEt2) in CH2Cl2 at ?78°C gave polymers with relatively high molecular weight (M?w > 20,000) and broad molecular weight distribution (M?w/M?n ~ 2). The HI/I2-initiated polymerization of 1 was an order of magnitude slower than that of ethyl vinyl ether, probably because of the electron-withdrawing phthalimide pendant. Hydrazinolysis of the imide functions in poly( 1 ) gave a water-soluble poly(vinyl ether) ( 3 ) with aliphatic primary amino pendants.  相似文献   

2.
Isobutyl propenyl ether [IBPE; CH3CH=CH? OCH2CH(CH3)2] was polymerized with a mixture of hydrogen iodide and iodine (HI/I2 initiator) in n-hexane at ?40°C to yield living polymers with a nearly monodisperse molecular weight distribution (MWD) (M?w/M?n ≈ 1.1). The number-average molecular weight (M?n) of the polymers increased proportionally to IBPE conversion and further increased when a new monomer feed was added to a completely polymerized solution. The M?n was controlled by the initial concentration of hydrogen iodide if the acid was charged in excess over iodine. In polymerization by iodine alone the M?n of the polymers obtained in nonpolar solvents (n-hexane and toluene) also increased with conversion, but their MWD was broader (M?w/M?n = 1.3–1.4) than in the HI/I2-initiated systems under similar conditions. The iodine-initiated polymerization in polar CH2Cl2 solvent, in contrast, led to nonliving polymers with a broad MWD (M?n/M?n = 1.6–1.8) and M?n, independent of conversion. The living polymerization of IBPE was also compared with that of the corresponding isobutyl vinyl ether, to determine the effect of the β-methyl group in IBPE.  相似文献   

3.
Polyvinyloxyalkylamines with the content of modified units from 25 to 75% were synthesized by condensation of poly(monoethanolamine vinyl ether). Their suitability as modifying agents in dressing of copper-zinc sulfide ores was examined.  相似文献   

4.
The cationic polymerization of 2-chloroethyl vinyl ether initiated by HI/weak Lewis acid (I2 or ZnI2) systems has been studied from both a kinetic-mechanistic and a synthetic viewpoint. At low temperature and in toluene as solvent, the polymerization proceeds via a living process and the kinetic order with respect to monomer varies according to the nature of the Lewis acid activator. This behaviour can be explained by the coordination of the Lewis acid with both the monomer and the chain-end, the latter leading to a strong activation of the -I bond towards monomer insertion. The living polymerization obtained from divinylether precursors leads to -I ended telechelics, and their transformation into dihydroxytelechelic oligomers has been performed. The chemical modification of chloroalkyl side groups by phase transfer catalysis allows the attachment of specific groups without consumption of-OH ends.  相似文献   

5.
The oligomerization mechanism of N-pyrrolyl ethyl vinyl ether is studied for two different routes of polymerization by using quantum mechanical calculations. Model compounds for oligomerization between monomers and monomer-pyrrole systems are optimized fully via semiempirical methods. By comparing the enthalpy changes of these two processes, it is found that generally the binding of pyrrole groups on the carbon backbone is favoured; however, the self-polymerization is also thermodynamically competitive. These results support the previous experimental evidence.  相似文献   

6.
A synthesis is reported for N1-mono- and N1,N3-disubstituted uracil derivatives containing a terminal carbon-carbon double bond in the side-chain. Alkylation of vinyl 2-chloroethyl ether by uracil potassium salts leads to a mixture of 1-[2-(vinyloxy)ethyl] and 1,3-di[2-(vinyloxy)ethyl] derivatives while treatment of 2,4-bis(trimethylsilyloxy)pyrimidines by vinyl 2-chloroethyl ether leads exclusively to N1-monosubstituted products. Alkylation of cytosine by this chloroether gave 1-[2-(vinyloxy)ethyl]cytosine. The synthesis of 1-[2-(allyloxy)ethyl]uracil derivatives was carried out by treatment of uracil potassium salts by 1-(allyloxy)-2-(p-toluenesulfonyloxy)ethane.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 393–397, March, 1993.  相似文献   

7.
The cationic polymerization of cis- and trans-ethyl propenyl ethers (EPE, CH3? CH?CH? O? C2H5), initiated by a mixture of hydrogen iodide and iodine (HI/I2 initiator) at ?40°C in nonpolar media (toluene and n-hexane), led to living polymers of controlled molecular weights and a narrow molecular weight distribution (MWD) (M?w/M?n = 1.2–1.3). The geometrical isomerism of the monomer did not affect the living character of the polymerization. 13C NMR stereochemical analysis of the polymers showed that the living propagating end is sterically less crowded than nonliving counterparts generated by conventional Lewis acids (e.g., BF3OEt2). New block copolymers between EPE (cis or trans) and isobutyl vinyl ether were also prepared by sequential living polymerization of the two monomers.  相似文献   

8.
The MeCH(O-i-Bu)Cl/TiCl4/MeCONMe2 initiating system was found to induce the rapid living carbocationic polymerization (LCPzn) of isobutyl vinyl ether (IBuVE) at ?100°C. Degradation by dealcoholation which usually accompanies the polymerization of alkyl vinyl ethers by strong Lewis acids is “frozen out” at this low temperature and poly(isobutyl vinyl ether)s (PIBuVEs) with theoretical molecular weights up to ca. 40,000 g/mol (calculated from the initiator/monomer input) and narrow molecular weight distributions (M?w/M?n ≤ 1.2) are readily obtained. According to 13C-NMR spectroscopy, PIBuVEs prepared by living polymerization at ?100°C are not stereoregular. The MeCH(O-i-Bu)Cl/TiCl4 combination induces the rapid LCPzn of IBuVE even in the absence of N,N-dimethylacetamide (DMA). The addition of the common ion salt, n-Bu4NCl to the latter system retards the polymerization and meaningful kinetic information can be obtained. The kinetic findings have been explained in terms of TiCl4. IBuVE and TiCl4 · IBuVE and TiCl4 · PIBuVE complexes. The HCl (formal initiator)/TiCl4/DMA combination is the first initiating system that can be regarded to induce the LCPzn of both isobutylene (IB) and IBuVE. Polyisobutylene (PIB)–PIBuVE diblocks were prepared by sequential monomer addition in “one pot” by the 2-chloro-2,4,4-trimethylpentane (TMP-Cl)/TiCl4/DMA initiating system. Crossover efficiencies are, however, below 35% because the PIB + IBuVE → PIB-b-PIBuVE crossover is slow. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The living cationic polymerization of isobutyl vinyl ether (IBVE) was investigated in the presence of various cyclic and acyclic ethers with 1-(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3, 1 ]/EtAlCl2 initiating system in hexane at 0°C. In particular, the effect of the basicity and steric hindrance of the ethers on the living nature and the polymerization rate was studied. The polymerization in the presence of a wide variety of cyclic ethers [tetrahydrofuran (THF), tetrahydropyran (THP), oxepane, 1,4-dioxane] and cyclic formals (1,3-dioxolane, 1,3-dioxane) gave living polymers with a very narrow molecular weight distribution (MWD) (M?ω/M?n ≤ 1.1). On the other hand, propylene oxide and oxetane additives resulted in no polymerization, whereas 1,3,5-trioxane gave the nonliving polymer with a broader MWD. The polymerization rates were dependent on the number of oxygen and ring sizes, which were related to the basicity and the steric hindrance. The order of the apparent polymerization rates in the presence of cyclic ether and formal additives was as follows: nonadditive ~ 1,3,5-trioxane ? 1,3-dioxane > 1,3-dioxolane ? 1,4-dioxane ? THP > oxepane ? THF ? oxetane, propylene oxide ? 0. The polymerization in the presence of the cyclic formals was much faster than that of the cyclic ethers: for example, the apparent propagation rate constant k in the presence of 1,3-dioxolane was 103 times larger than that in the presence of THF. Another series of experiments showed that acyclic ethers with oxyethylene units were effective as additives for the living polymerization with 1 /EtAlCl2 initiating system in hexane at 0°C. The polymers obtained in the presence of ethylene glycol diethyl ether and diethylene glycol diethyle ether had very narrow molecular weight distribution (M?ω/M?n ≤ 1.1), and the M?n was directly proportional to the monomer conversion. The polymerization behavior was quite different in the polymerization rates and the MWD of the obtained polymers from that in the presence of diethyl ether. These results suggested the polydentate-type interaction or the alternate interaction of two or three ether oxygens in oxyethylene units with the propagating carbocation, to permit the living polymerization of IBVE. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Cationic polymerization of 2-vinyloxyethyl glycidyl ether (VEGE), a vinyl ether with an epoxy group, was conducted with various initiators in CH2Cl2 in the temperature range from +15 to ?78°C, and the possibility of its selective vinyl polymerization was investigated. BF3OEt2 polymerized both vinyl and epoxy groups of VEGE to yield polymers partially insoluble in organic solvents. HI/I2, iodine, and CF3SO3H gave soluble, low-molecular-weight oligomers with epoxy pendants. 1H-NMR structural analysis of the oligomeric products showed that the epoxy/vinyl ratio of the pendants decreases in the order: 100% epoxy ~ CF3SO3H > HI/I2 ~ I2 ? BF3OEt2. Although HI/I2 or iodine mainly polymerized the vinyl group, the reaction of the vinyl ether-type growing end with an epoxy group of VEGE took place during the polymerization, so that the monomer conversion leveled off at about 40%.  相似文献   

11.
Conclusions Trialkoxysilylalkanethiols (CH3O)3Si(CH2)nSH (n=1–3) react with divinyl sulfide at 100–110° to give 2-(trialkoxysilylalkylthio)ethyl vinyl sulfides (CH3O)3Si(CH2)nS (CH2)2SCH=CH2 in high yield. The reactivity of the trialkoxysilylalkanethiols decreases with increase in the number of CH2 groups between the S and Si atoms. A second molecule of the organosilicon thiol acids adds with difficulty to divinyl sulfide to give the diadduct.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 197–199, January, 1977.  相似文献   

12.
13.
This paper reviews the recent progress in our research on the living cationic polymerization of vinyl compounds by the hydrogen iodide/iodine (HI/I2) initiating system, with emphasis on its scope, mechanism, and applications to new polymer synthesis. The scope of the living cationic polymerization has been expanded to include vinyl ethers, propenyl ethers, unsaturated cyclic ethers, and styrene derivatives as monomers. The initiation/propagation mechanism was discussed on the basis of recent direct analysis on the living system by NMR and UV/visible spectroscopy. The proposed mechanism involves a quantitative formation of Hl-vinyl ether adduct [CH3-CH(OR)-I; l] that is by itself incapable of initiating polymerization. In the presence of iodine, however, the CH-I bond of l is electrophilically activated by iodine and living propagation occurs via the insertion of vinyl ether to the activated CH-I bond. Such living polymerizations were found to proceed in not only nonpolar but polar solvents (CH2Cl2) as well. Quenching the living end with amines gave polymers capped with an amino group that in turn enabled us to determine the living end concentration. Applications of the HI/I2-initiated living process to the synthesis of new bifunctional and block polymers were also described.  相似文献   

14.
This paper focuses on two recent topics in living cationic polymerization of vinyl monomers, i.e., (a) Development of new initiating systems: RCOOH/Lewis acid for vinyl ethers; CH3CH(C6H5)Cl/SnCl4/nBu4NCl for styrene. (b) Synthesis of shape-controlled poly(vinyl ethers): Tri-armed star polymers; Multi-armed spherical polymers. For the RCOOH-based systems, a generalized concept of living cationic polymerization was discussed on the basis of the effects of the counteranions (or R) and Lewis acids (ZnCl2 and EtAlCl2). The CH3CH(C6H5)Cl-based system permitted a truly living cationic polymerization of styrene. The tri- and multi-armed poly(vinyl ethers) included new amphiphilic polymers of unique topology, solubility, etc., all of which were prepared by living cationic polymerization.  相似文献   

15.
16.
Photoirradiation of triaryl(1-pyrenyl)bismuthonium salts in acetonitrile afforded triarylbismuthanes and pyrene, accompanied by the generation of protic acids. Triaryl(1-pyrenyl)bismuthonium hexafluoroantimonates have proven to behave as efficient photoinitiators for cationic polymerization of oxiranes and a vinyl ether, affording the corresponding polymers in good yields within 1 min.  相似文献   

17.
The living cationic polymerization of vinyl ethers was carried out with organoaluminum compounds in the presence of various types of esters and ethers (cyclic and acyclic), to find out the suitable added bases available for the living polymerization. The effects of the basicity and steric hindrance of added bases were investigated in detail. On the basis of these results, a fast living polymerization system was realized. To synthesize water-soluble polymers such as thermally-induced phase separating polymers and polyalcohols with well-defined polymer structure, the living polymerization of various vinyl ethers was examined. The aqueous solution of living poly(vinyl ethers) having oxyethylene units exhibited a quite sensitive (ΔTps=0.3–0.5°C) and reversible phase separation on heating and cooling. The effects of polymer structures (pendant substituent, polymer sequence, molecular weight, and MWD) on the phase separation behavior were investigated. PVA and block copolymers containing PVA units with a narrow MWD were also prepared via living cationic polymerization of vinyl ethers and a deprotection reaction.  相似文献   

18.
The effect of zinc chloride (ZnCl2) on the cationic polymerization of isobutyl vinyl ether (IBVE) initiated by carboxyl groups on a carbon black surface was investigated. Although the polymerization of IBVE was initiated by carboxyl groups on the surface, the rate of polymerization was small and the molecular weight distribution (MWD) of poly IBVE was very broad. The rate of the polymerization was found to be drastically increased, and 100% monomer conversion was achieved in a short time by the addition of ZnCl2. The number-average molecular weights (Mn) of the polyIBVE were directly proportional to monomer conversion in the polymerization initiated by the carbon black/ZnCl2 system. By addition of the monomer at the end of the first-stage polymerization, the added monomer was smoothly polymerized at the same rate as in the first stage. The Mn of the polymer was in excellent agreement with the calculated value, assuming the polyIBVE chain forms per unit carboxyl group on the surface and MWD was narrow (Mw/Mn = 1.2 ~ 1.3). Based on the results, it is concluded that carbon black/ZnCl2 system has an ability to initiate the living cationic polymerization of IBVE. Furthermore, it was found that polyIBVE was grafted onto the carbon black surface after the quenching of the living polymer with methanol. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
20.
This study has shown a nearly perfect living polymerization of isobutyl vinyl ether (IBVE) to proceed not only in nonpolar media (e.g., n-hexane) but in relatively polar CH2Cl2 solvent, provided that the HI concentration is sufficiently high. The produced polymers had a nearly monodisperse molecular weight distribution (M w/M n ≤ 1.1); the number-average molecular weight (M n) increased in direct proportion to IBVE conversion and its increase continued on the addition of a fresh feed of the monomer at the end of the polymerization. The use of a more polar medium (PhNO2/CH2Cl2) or a lower HI concentration leads to chain transfer reactions, by promoting the ionic dissociation of the “nondissociated” living propagating species. The successful living polymerization by HI/I2 in CH2Cl2 indicates a very strong interaction between the iodide anion and the growing end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号